public class ComplexSuperLUEx1 extends Object
Computes the LU factorization of a sparse complex matrix.
The LU Factorization of the sparse complex 6×6 matrix A=(10+7i0.00.00.00.00.00.03+2i−3+0i−1+2i0.00.00.00.04+2i0.00.00.0−2−4i0.00.01+6i−1+3i0.0−5+4i0.00.0−5+0i12+2i−7+7i−1+12i−2+8i0.00.00.03+7i) is computed. The sparse coordinate form for A is given by row, column, value triplets:
row | column | value |
---|---|---|
0 | 0 | 10+7i |
1 | 1 | 3+2i |
1 | 2 | −3+0i |
1 | 3 | −1+2i |
2 | 2 | 4+2i |
3 | 0 | −2−4i |
3 | 3 | 1+6i |
3 | 4 | −1+3i |
4 | 0 | −5+4i |
4 | 3 | −5+0i |
4 | 4 | 12+2i |
4 | 5 | −7+7i |
5 | 0 | −1+12i |
5 | 1 | −2+8i |
5 | 5 | 3+7i |
Let xT=(1+i,2+2i,3+3i,4+4i,5+5i,6+6i) so that b1:=Ax=(3+17i,−19+5i,6+18i,−38+32i,−63+49i,−57+83i)T and b2:=AHx=(54−112i,46−58i,12,5−51i,78+34i,60−94i)T.
The LU factorization of A is used to solve the complex sparse linear systems Ax=b1 and AHx=b2 with iterative refinement. The reciprocal pivot growth factor and the reciprocal condition number are also computed.
Constructor and Description |
---|
ComplexSuperLUEx1() |
Copyright © 2020 Rogue Wave Software. All rights reserved.