public class SuperLUEx1 extends Object
SuperLU Example 1: Computes the LU factorization of a sparse matrix.
The LU Factorization of the sparse 6×6 matrix A=(10.00.00.00.00.00.00.010.0−3.0−1.00.00.00.00.015.00.00.00.0−2.00.00.010.0−1.00.0−1.00.00.0−5.01.0−3.0−1.0−2.00.00.00.06.0)
is computed. The sparse coordinate form for A is given by a series of row, column, and value triplets:
row | column | value |
---|---|---|
0 | 0 | 10.0 |
1 | 1 | 10.0 |
1 | 2 | −3.0 |
1 | 3 | −1.0 |
2 | 2 | 15.0 |
3 | 0 | −2.0 |
3 | 3 | 10.0 |
3 | 4 | −1.0 |
4 | 0 | −1.0 |
4 | 3 | −5.0 |
4 | 4 | 1.0 |
4 | 5 | −3.0 |
5 | 0 | −1.0 |
5 | 1 | −2.0 |
5 | 5 | 6.0 |
Let yT=(1.0,2.0,3.0,4.0,5.0,6.0). Then we have b1:=Ay=(10.0,7.0,45.0,33.0,−34.0,31.0)T and b2:=ATy=(−9.0,8.0,39.0,13.0,1.0,21.0)T.
In the example, the The LU factorization of A is used to solve the sparse linear system Ax=b1ATx=b2
with iterative refinement. The reciprocal pivot growth factor and the reciprocal condition number are also computed. Note that by construction x=y is the solution to this system.
Constructor and Description |
---|
SuperLUEx1() |
Copyright © 2020 Rogue Wave Software. All rights reserved.