com.imsl.datamining.neural
Class QuasiNewtonTrainer.BlockGradObjective
java.lang.Object
com.imsl.datamining.neural.QuasiNewtonTrainer.Objective
com.imsl.datamining.neural.QuasiNewtonTrainer.GradObjective
com.imsl.datamining.neural.QuasiNewtonTrainer.BlockGradObjective
- All Implemented Interfaces:
- MinUnconMultiVar.Function, MinUnconMultiVar.Gradient
- Enclosing class:
- QuasiNewtonTrainer
protected class QuasiNewtonTrainer.BlockGradObjective
- extends QuasiNewtonTrainer.GradObjective
Method Summary |
double |
f(double[] weights)
Public interface for the multivariate function to be minimized. |
void |
gradient(double[] weights,
double[] gradient)
Public interface for the gradient of the multivariate function
to be minimized. |
Methods inherited from class java.lang.Object |
clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait |
QuasiNewtonTrainer.BlockGradObjective
protected QuasiNewtonTrainer.BlockGradObjective()
f
public double f(double[] weights)
- Description copied from interface:
MinUnconMultiVar.Function
- Public interface for the multivariate function to be minimized.
- Specified by:
f
in interface MinUnconMultiVar.Function
- Overrides:
f
in class QuasiNewtonTrainer.Objective
- Parameters:
weights
- a double
array, the point
at which the function is to be evaluated
- Returns:
- a
double
, the value of the function at x
gradient
public void gradient(double[] weights,
double[] gradient)
- Description copied from interface:
MinUnconMultiVar.Gradient
- Public interface for the gradient of the multivariate function
to be minimized.
- Specified by:
gradient
in interface MinUnconMultiVar.Gradient
- Overrides:
gradient
in class QuasiNewtonTrainer.GradObjective
- Parameters:
weights
- a double
array, the point at which the
gradient of the function is to be evaluatedgradient
- a double
array, the value of the gradient
of the function at x
Copyright © 1970-2008 Visual Numerics, Inc.
Built July 8 2008.