public class MaximumLikelihoodEstimation extends Object implements Serializable, Cloneable
| Constructor and Description |
|---|
MaximumLikelihoodEstimation(double[] x,
ProbabilityDistribution pd)
Constructor for maximum likelihood estimation
|
| Modifier and Type | Method and Description |
|---|---|
void |
compute()
Computes the maximum likelihood estimates.
|
double[] |
getEstimates()
Returns the parameter estimates.
|
double[][] |
getHessian()
Returns the hessian of the log-likelihood function evaluated at the
current parameter estimates.
|
double |
getMinusLogLikelihood()
Returns minus the log-likelihood evaluated at the parameter estimates.
|
double[] |
getStandardErrors()
Returns the approximate standard errors of the maximum likelihood
estimates.
|
double[][] |
getVarCov()
Returns the approximate variance-covariance matrix of the maximum
likelihood estimates.
|
void |
setExact(boolean exact)
Sets the flag indicating whether or not the PDF supplies the exact
gradient and hessian.
|
void |
setGuess(double[] guess)
Sets the guess or starting values of the parameters.
|
void |
setSample(double[] x)
Sets the sample data to use in the estimation procedure.
|
public MaximumLikelihoodEstimation(double[] x,
ProbabilityDistribution pd)
x - a double array containing the sample observationspd - an instance of ProbabilityDistributionpublic void compute()
throws MinConNLP.ConstraintEvaluationException,
MinConNLP.ObjectiveEvaluationException,
MinConNLP.WorkingSetSingularException,
MinConNLP.QPInfeasibleException,
MinConNLP.PenaltyFunctionPointInfeasibleException,
MinConNLP.LimitingAccuracyException,
MinConNLP.TooManyIterationsException,
MinConNLP.BadInitialGuessException,
MinConNLP.IllConditionedException,
MinConNLP.SingularException,
MinConNLP.LinearlyDependentGradientsException,
MinConNLP.NoAcceptableStepsizeException,
MinConNLP.TerminationCriteriaNotSatisfiedException
MinConNLP.ConstraintEvaluationException - Constraint
evaluation returns an error with current point.MinConNLP.ObjectiveEvaluationException - Objective
evaluation returns an error with current point.MinConNLP.WorkingSetSingularException - Working set
is singular in dual extended QP.MinConNLP.QPInfeasibleException - QP problem
seemingly infeasible.MinConNLP.PenaltyFunctionPointInfeasibleException - Penalty function point infeasible.MinConNLP.LimitingAccuracyException - Limiting
accuracy reached for a singular problem.MinConNLP.TooManyIterationsException - Maximum number
of iterations exceeded.MinConNLP.BadInitialGuessException - Penalty function
point infeasible for original problem. Try new initial guess.MinConNLP.IllConditionedException - Problem is
singular or ill-conditioned.MinConNLP.SingularException - Problem is singular.MinConNLP.LinearlyDependentGradientsException - Working set gradients are linearly dependent.MinConNLP.NoAcceptableStepsizeException - No
acceptable stepsize in [SIGMA,SIGLA].MinConNLP.TerminationCriteriaNotSatisfiedException - Termination criteria are not satisfied.public double[] getEstimates()
double array containing the parameter estimatespublic double[][] getHessian()
double matrix containing the hessian matrixpublic double getMinusLogLikelihood()
double, the minus log-likelihoodpublic double[] getStandardErrors()
throws SingularMatrixException
double array containing the standard errorsSingularMatrixException - The matrix is singular.public double[][] getVarCov()
throws SingularMatrixException
double matrix containing the approximate
variance-covariance matrixSingularMatrixExceptionpublic void setExact(boolean exact)
exact - a boolean. When true, the function
expects the pdf to supply the analytic gradient and hessian
calculation.
Default: exact = false.
public void setGuess(double[] guess)
guess - a double array of the same length as the
parameters containing proper starting values for the optimizationpublic void setSample(double[] x)
x - a double array containing sample observations of
the random variableCopyright © 1970-2015 Rogue Wave Software
Built March 24 2015.