public class MaximumLikelihoodEstimation extends Object implements Serializable, Cloneable
| Constructor and Description |
|---|
MaximumLikelihoodEstimation(double[] x,
ProbabilityDistribution pd,
double[] guess)
Constructor for maximum likelihood estimation
|
| Modifier and Type | Method and Description |
|---|---|
void |
compute()
Computes the maximum likelihood estimates.
|
double[] |
getEstimates()
Returns the parameter estimates.
|
double[][] |
getHessian()
Returns the Hessian of the log-likelihood function evaluated at the
current parameter estimates.
|
double |
getLogLikelihood(double[] x,
double[] params)
Returns the log-likelihood.
|
double |
getMinusLogLikelihood()
Returns minus the log-likelihood evaluated at the parameter estimates.
|
double[] |
getStandardErrors()
Returns the approximate standard errors of the maximum likelihood
estimates.
|
double[][] |
getVarCov()
Returns the approximate variance-covariance matrix of the maximum
likelihood estimates.
|
void |
setClosedForm(boolean cf)
Sets the flag indicating whether or not the closed form solution should
be used.
|
void |
setExact(boolean exact)
Sets the flag indicating whether or not the PDF supplies the exact
gradient and Hessian.
|
void |
setGuess(double[] guess)
Sets the guess or starting values of the parameters.
|
void |
setSample(double[] x)
Sets the sample data to use in the estimation procedure.
|
public MaximumLikelihoodEstimation(double[] x,
ProbabilityDistribution pd,
double[] guess)
x - a double array containing the sample observationspd - an instance of ProbabilityDistributionguess - a double array or a comma-separated list of
doubles giving the starting values for the parameters
Note: The argument guess is a variable length argument list
(varargs).
public void compute()
throws MinConNLP.ConstraintEvaluationException,
MinConNLP.ObjectiveEvaluationException,
MinConNLP.WorkingSetSingularException,
MinConNLP.QPInfeasibleException,
MinConNLP.PenaltyFunctionPointInfeasibleException,
MinConNLP.LimitingAccuracyException,
MinConNLP.TooManyIterationsException,
MinConNLP.BadInitialGuessException,
MinConNLP.IllConditionedException,
MinConNLP.SingularException,
MinConNLP.LinearlyDependentGradientsException,
MinConNLP.NoAcceptableStepsizeException,
MinConNLP.TerminationCriteriaNotSatisfiedException
MinConNLP.ConstraintEvaluationException - Constraint
evaluation returns an error with current point.MinConNLP.ObjectiveEvaluationException - Objective
evaluation returns an error with current point.MinConNLP.WorkingSetSingularException - Working set
is singular in dual extended QP.MinConNLP.QPInfeasibleException - QP problem
seemingly infeasible.MinConNLP.PenaltyFunctionPointInfeasibleException - Penalty function point infeasible.MinConNLP.LimitingAccuracyException - Limiting
accuracy reached for a singular problem.MinConNLP.TooManyIterationsException - Maximum number
of iterations exceeded.MinConNLP.BadInitialGuessException - Penalty function
point infeasible for original problem. Try new initial guess.MinConNLP.IllConditionedException - Problem is
singular or ill-conditioned.MinConNLP.SingularException - Problem is singular.MinConNLP.LinearlyDependentGradientsException - Working set gradients are linearly dependent.MinConNLP.NoAcceptableStepsizeException - No
acceptable stepsize in [SIGMA,SIGLA].MinConNLP.TerminationCriteriaNotSatisfiedException - Termination criteria are not satisfied.public double[] getEstimates()
double array containing the parameter estimatespublic double[][] getHessian()
double matrix containing the Hessian matrixpublic double getLogLikelihood(double[] x,
double[] params)
Note that this method is for convenience and does not use any of the member data or parameters. The user supplies the arguments.
x - a double array containing sample dataparams - a double array or comma separated list of
doubles containing the parameter valuesdouble, the log-likelihood evaluated at the given
data and parameter valuespublic double getMinusLogLikelihood()
This method returns the value of the objective function, the minimum of minus the log-likelihood.
double, minus the log-likelihoodpublic double[] getStandardErrors()
throws SingularMatrixException
double array containing the standard errorsSingularMatrixException - The matrix is singular.public double[][] getVarCov()
throws SingularMatrixException
double matrix containing the approximate
variance-covariance matrixSingularMatrixException - The matrix is singular.public void setClosedForm(boolean cf)
cf - a boolean. When true, the compute()
method returns the closed form solution if the
ProbabilityDistribution is a
ClosedFormMaximumLikelihoodInterface object. The option is
ignored if that is not the case.
Default: cf = false.
public void setExact(boolean exact)
exact - a boolean. When true, the function
expects the pdf to supply the analytic gradient and Hessian
calculation.
Default: exact = false.
public void setGuess(double[] guess)
guess - a double array of the same length as the
parameters containing proper starting values for the optimization.
guess may also be a comma separated list of doubles giving
the parameter values.
Note: The argument guess is a variable length argument list
(varargs).
public void setSample(double[] x)
x - a double array containing sample observations of
the random variableCopyright © 1970-2015 Rogue Wave Software
Built June 18 2015.