public class NormalPD extends ProbabilityDistribution implements PDFHessianInterface, Serializable, Cloneable
| Constructor and Description |
|---|
NormalPD()
Constructor for the normal probability distribution
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
getMLEs(double[] x)
Returns the mean and standard deviation of the sample data.
|
double[] |
getParameterLowerBounds()
Returns the lower bounds for the mean
|
double[] |
getParameterUpperBounds()
Returns the upper bounds for the mean
|
double[] |
getPDFGradient(double x,
double[] params)
Returns the analytic gradient of the normal pdf.
|
double[][] |
getPDFHessian(double x,
double[] params)
Returns the analytic hessian matrix of the normal pdf evaluated at a
point,
x. |
double |
pdf(double x,
double[] params)
Returns the value of the normal probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfXpublic double[] getMLEs(double[] x)
These are the maximum likelihood estimates for the mean and standard deviation of the Normal distribution, given the data.
x - a double array containing the datadouble array containing the mean and standard
deviationpublic double[] getParameterLowerBounds()
getParameterLowerBounds in class ProbabilityDistributiondouble array containing the lower boundspublic double[] getParameterUpperBounds()
getParameterUpperBounds in class ProbabilityDistributiondouble array containing the upper boundspublic double[] getPDFGradient(double x,
double[] params)
getPDFGradient in interface PDFGradientInterfacex - a double valueparams - a double array containing values of the
parameters, params[0]="params[1]="params[0],
params[1].
Note: The argument params is a variable length argument list
(varargs).
double array containing the partial derivatives of
the pdf with respect to the parameters evaluated at x and
the given parameter valuespublic double[][] getPDFHessian(double x,
double[] params)
x.getPDFHessian in interface PDFHessianInterfacex - a double valueparams - a double array containing values of the
parameters, params[0]="params[1]="params[0],
params[1].
Note: The argument params is a variable length argument list
(varargs).
double matrix containing the second partial
derivatives of the pdf with respect to the parameters evaluated at
x and the given parameter valuespublic double pdf(double x,
double[] params)
The probability density function for a normal distribution is given by
![]()
pdf in class ProbabilityDistributionx - a double valueparams - a double array containing values of the
parameters, params[0]="params[1]="params[0],
params[1].
Note: The argument params is a variable length argument list
(varargs).
double value equal to the probability density at
x given the parameter valuesCopyright © 1970-2015 Rogue Wave Software
Built June 18 2015.