Package com.imsl.datamining
Enum Class GradientBoosting.LossFunctionType
java.lang.Object
java.lang.Enum<GradientBoosting.LossFunctionType>
com.imsl.datamining.GradientBoosting.LossFunctionType
- All Implemented Interfaces:
Serializable,Comparable<GradientBoosting.LossFunctionType>,java.lang.constant.Constable
- Enclosing class:
- GradientBoosting
public static enum GradientBoosting.LossFunctionType
extends Enum<GradientBoosting.LossFunctionType>
The loss function type as specified by the error measure.
-
Nested Class Summary
Nested classes/interfaces inherited from class java.lang.Enum
Enum.EnumDesc<E extends Enum<E>> -
Enum Constant Summary
Enum ConstantsEnum ConstantDescriptionThe loss criteria is the AdaBoost.M1 criterion.The loss criteria is the binomial or Bernoulli negative log-likelihood, or deviance.The loss criteria is the Huber-M weighted squared error and absolute deviation error with parameter \(\alpha\).The loss criteria is least absolute deviation error.The loss criteria is least squared error.The loss criteria is the (K-class) multinomial negative log-likelihood, or multinomial deviance. -
Method Summary
Modifier and TypeMethodDescriptionReturns the enum constant of this class with the specified name.static GradientBoosting.LossFunctionType[]values()Returns an array containing the constants of this enum class, in the order they are declared.
-
Enum Constant Details
-
LEAST_SQUARES
The loss criteria is least squared error. That is, the loss function\( L({y_i,f(x_i)}) = \sum (y_i - f(x_i))^2 \)
-
LEAST_ABSOLUTE_DEVIATION
The loss criteria is least absolute deviation error. That is, the loss function\( L({y_i,f(x_i)}) = \sum |(y_i - f(x_i))| \)
-
HUBER_M
The loss criteria is the Huber-M weighted squared error and absolute deviation error with parameter \(\alpha\). That is, the loss function\( L({y_i,f(x_i)}) = \sum \Psi(y_i,f(x_i)) \)
where$$ \Psi(y,f(x)) = \left\{ \begin{array}{ll} (y-f(x))^2 & {\rm for}\;|y-f(x)| \le \delta\; \\ 2\delta(|y-f(x)| - \delta) & {\rm for}\;|y-f(x)| > \delta\; \end{array} \right.$$
And where \(\delta\) is the \(\alpha\) -empirical quantile of the residuals, \({y_i-f(x_i),i=1,...,n}\)
-
ADABOOST
The loss criteria is the AdaBoost.M1 criterion. The loss function\( L({y_i,f(x_i)}) = \sum \exp\left( -(2y_i-1)f(x_i)\right) \)
-
MULTINOMIAL_DEVIANCE
The loss criteria is the (K-class) multinomial negative log-likelihood, or multinomial deviance. The loss function\(L({y_i,f(x_i)})=-2 \sum_i \sum_k y_{ik}\log(p_{ik})\)
where\(p_{ik}=\frac{\exp{f_k(x_i)}}{(\sum_k \exp{f_k(x_i)})}\)
-
BERNOULLI
The loss criteria is the binomial or Bernoulli negative log-likelihood, or deviance.\( L({y_i,f(x_i)}) = -2 \sum {(y_if(x_i) - \log(1+\exp(f(x_i)))}\)
-
-
Method Details
-
values
Returns an array containing the constants of this enum class, in the order they are declared.- Returns:
- an array containing the constants of this enum class, in the order they are declared
-
valueOf
Returns the enum constant of this class with the specified name. The string must match exactly an identifier used to declare an enum constant in this class. (Extraneous whitespace characters are not permitted.)- Parameters:
name- the name of the enum constant to be returned.- Returns:
- the enum constant with the specified name
- Throws:
IllegalArgumentException- if this enum class has no constant with the specified nameNullPointerException- if the argument is null
-