Package com.imsl.math
Class Hyperbolic
java.lang.Object
com.imsl.math.Hyperbolic
Pure Java implementation of the hyperbolic functions and their inverses.
This Java code is based on C code in the package fdlibm, which can be obtained from www.netlib.org. The original fdlibm C code contains the following notice.
Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
Developed at SunSoft, a Sun Microsystems, Inc. business. Permission to use, copy, modify, and distribute this software is freely granted, provided that this notice is preserved.
- Author:
- Sun Microsystems (original C code in fdlibm), John F. Brophy (translated from C to Java)
- See Also:
-
Method Summary
Modifier and TypeMethodDescriptionstatic doubleacosh(double x) Returns the inverse hyperbolic cosine of its argument.static doubleasinh(double x) Returns the inverse hyperbolic sine of its argument.static doubleatanh(double x) Returns the inverse hyperbolic tangent of its argument.static doublecosh(double x) Returns the hyperbolic cosine of its argument.static doubleexpm1(double x) Returns exp(x)-1, the exponential of x minus 1.static doublelog1p(double x) Returns log(1+x), the logarithm of (x plus 1).static doublesinh(double x) Returns the hyperbolic sine of its argument.static doubletanh(double x) Returns the hyperbolic tangent of its argument.
-
Method Details
-
expm1
public static double expm1(double x) Returns exp(x)-1, the exponential of x minus 1. Specifically,
\({\rm expm1}(\pm 0)\) returns \(\pm 0\)
\({\rm expm1}(+\infty)\) returns \(\pm \infty\)
\({\rm expm1}(-\infty)\) returns -1.- Parameters:
x- adoublespecifying the argument.- Returns:
- a
doublevalue representing exp(x)-1.
-
log1p
public static double log1p(double x) Returns log(1+x), the logarithm of (x plus 1). Specifically,
\({\rm log1p}(\pm 0)\) returns \(\pm 0\)
\({\rm log1p}(-1)\) returns \(-\infty\)
\({\rm log1p}(x)\) returns NaN, if \(x \lt -1\).
\({\rm log1p}(\pm \infty)\) returns \(\pm \infty\)- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing log(1+x).
-
sinh
public static double sinh(double x) Returns the hyperbolic sine of its argument. Specifically,
\({\rm sinh}(\pm 0)\) returns \(\pm 0\)
\({\rm sinh}(\pm \infty)\) returns \(\pm \infty\)- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing the hyperbolic sine of x.
-
cosh
public static double cosh(double x) Returns the hyperbolic cosine of its argument. Specifically,
\({\rm cosh}(\pm 0)\) returns 1.
\({\rm cosh}(\pm \infty)\) returns \(+\infty\)- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing the hyperbolic cosine of x.
-
tanh
public static double tanh(double x) Returns the hyperbolic tangent of its argument. Specifically,
\({\rm tanh}(\pm 0)\) returns \(\pm 0\)
\({\rm tanh}(\pm \infty)\) returns \(\pm 1\).- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing the hyperbolic tangent of x.
-
asinh
public static double asinh(double x) Returns the inverse hyperbolic sine of its argument. Specifically,
\({\rm asinh}(\pm 0)\) returns \(\pm \infty\)
\({\rm asinh}(\pm \infty)\) returns \(\pm \infty\)- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing the number whose hyperbolic sine is x.
-
acosh
public static double acosh(double x) Returns the inverse hyperbolic cosine of its argument. Specifically,
acosh(1) returns +0
\({\rm acosh}(\pm \infty)\) returns \(+\infty\)
\({\rm acosh}(x)\) returns NaN, if \(|x| \lt 1\).- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing the number whose hyperbolic cosine is x.
-
atanh
public static double atanh(double x) Returns the inverse hyperbolic tangent of its argument. Specifically,
\({\rm atanh}(\pm 0)\) returns \(\pm 0\)
\({\rm atanh}(\pm 1)\) returns \(+\infty\)
atanh(x) returns NaN, if \(|x| \gt 1\).- Parameters:
x- adoublevalue representing the argument.- Returns:
- a
doublevalue representing the number whose hyperbolic tangent is x.
-