Uses of Class
com.imsl.math.SingularMatrixException

Packages that use SingularMatrixException
Package
Description
Data mining and machine learning.
Mathematical functions and algorithms.
Statistical methods.
Probability distributions and parameter estimation.
Math examples.
  • Uses of SingularMatrixException in com.imsl.datamining

    Modifier and Type
    Method
    Description
    void
    LogisticRegressionModelObject.aggregateModels(LogisticRegressionModelObject lrm)
    Aggregates or combines a different model object to this logistic regression model object.
  • Uses of SingularMatrixException in com.imsl.math

    Modifier and Type
    Method
    Description
    void
    FeynmanKac.computeCoefficients(int numLeftBounds, int numRightBounds, FeynmanKac.Boundaries pdeBounds, double[] xGrid, double[] tGrid)
    Determines the coefficients of the Hermite quintic splines that represent an approximate solution for the Feynman-Kac PDE.
    double
    ComplexSuperLU.getConditionNumber()
    Returns the estimate of the reciprocal condition number of the matrix A.
    double
    Returns the estimate of the reciprocal condition number of the matrix A.
    double
    Returns the reciprocal pivot growth factor.
    double
    Returns the reciprocal pivot growth factor.
    static Complex[]
    ComplexLU.solve(Complex[][] a, Complex[] b)
    Solve Ax = b for x using the LU factorization of A.
    ComplexSuperLU.solve(Complex[] b)
    Computation of the solution vector for the system \( Ax = b\).
    double[]
    ConjugateGradient.solve(double[] b)
    Solves a real symmetric positive or negative definite system \(Ax=b\) using a conjugate gradient method with or without preconditioning.
    double[]
    GenMinRes.solve(double[] b)
    Generate an approximate solution to \(Ax=b\) using the Generalized Residual Method.
    final void
    LinearProgramming.solve()
    Deprecated.
    Solves the program using the revised simplex algorithm.
    static double[]
    LU.solve(double[][] a, double[] b)
    Solve Ax = b for x using the LU factorization of A.
    double[]
    QR.solve(double[] b)
    Returns the solution to the least-squares problem Ax = b.
    double[]
    QR.solve(double[] b, double tol)
    Returns the solution to the least-squares problem Ax = b using an input tolerance.
    double[]
    SuperLU.solve(double[] b)
    Computation of the solution vector for the system \( Ax = b\).
    ComplexSuperLU.solveConjugateTranspose(Complex[] b)
    Computation of the solution vector for the system \( A^Hx = b\).
    ComplexSuperLU.solveTranspose(Complex[] b)
    Computation of the solution vector for the system \( A^Tx = b\).
    double[]
    SuperLU.solveTranspose(double[] b)
    Computation of the solution vector for the system \( A^Tx = b\).
    Constructors in com.imsl.math that throw SingularMatrixException
    Modifier
    Constructor
    Description
     
    Cholesky(double[][] a)
    Create the Cholesky factorization of a symmetric positive definite matrix of type double.
     
    Creates the LU factorization of a square matrix of type Complex.
     
    CsShape(double[] xData, double[] yData)
    Construct a cubic spline interpolant which is consistent with the concavity of the data.
     
    LU(double[][] a)
    Creates the LU factorization of a square matrix of type double.
  • Uses of SingularMatrixException in com.imsl.stat

    Modifier and Type
    Method
    Description
    final void
    ARMAOutlierIdentification.compute(int[] model)
    Detects and determines outliers and simultaneously estimates the model parameters for the given time series.
    final void
    AutoARIMA.compute(int maxlag)
    Estimates potential missing values, detects and determines outliers and simultaneously fits an optimum model from a set of different \( \text{ARIMA}(p,0,0)\times(0,d,0)_s\) models to the outlier free time series.
    final void
    AutoARIMA.compute(int[] arOrders, int[] maOrders)
    Estimates potential missing values, detects and determines outliers and simultaneously fits an optimum model from a set of different \( \text{ARIMA}(p,0,q)\times(0,d,0)_s\) models to the outlier free time series.
    final void
    AutoARIMA.compute(int p, int q, int s, int d)
    Estimates potential missing values, detects and determines outliers and simultaneously fits an \(\text{ARIMA}(p,0,q)\times(0,d,0)_s \) model to the outlier free time series.
    double[][]
    Computes the matrix of factor score coefficients.
  • Uses of SingularMatrixException in com.imsl.stat.distributions

    Modifier and Type
    Method
    Description
    double[]
    MaximumLikelihoodEstimation.getStandardErrors()
    Returns the approximate standard errors of the maximum likelihood estimates.
    double[][]
    MaximumLikelihoodEstimation.getVarCov()
    Returns the approximate variance-covariance matrix of the maximum likelihood estimates.
  • Uses of SingularMatrixException in com.imsl.test.example.math

    Modifier and Type
    Method
    Description
    static void
    ComplexEx1.main(String[] args)
     
    static void
    ComplexLUEx1.main(String[] args)
     
    static void
    LUEx1.main(String[] args)
     
    static void
    QREx1.main(String[] args)