besselExpI0¶
Evaluates the exponentially scaled modified Bessel function of the first kind of order zero.
Synopsis¶
besselExpI0 (x)
Required Arguments¶
- float
x(Input) - Point at which the Bessel function is to be evaluated.
Return Value¶
The value of the scaled Bessel function \(e^{-|x|} I_0(x)\). If no solution can be computed, NaN is returned.
Description¶
The Bessel function \(I_0(x)\) is defined to be
\[I_0(x) = \tfrac{1}{\pi} \int_0^{\pi} \cosh (x \cos \theta) d \theta\]
Example¶
The expression \(e^{-4.5} I_0(4.5)\) is computed directly by calling
besselExpI0 and indirectly by calling besselI0. The absolute
difference is printed. For large x, the internal scaling provided by
besselExpI0 avoids overflow that may occur in besselI0.
from __future__ import print_function
from numpy import *
from pyimsl.math.besselExpI0 import besselExpI0
from pyimsl.math.besselI0 import besselI0
x = 4.5
ans = besselExpI0(x)
print("(e**(-4.5))I0(4.5) = %f" % (ans))
error = abs(ans - (exp(-x) * besselI0(x)))
print("Error = %e" % (error))
Output¶
(e**(-4.5))I0(4.5) = 0.194198
Error = 2.775558e-17