besselI1¶
Evaluates the real modified Bessel function of the first kind of order one \(I_1(x)\).
Synopsis¶
besselI1 (x)
Required Arguments¶
- float
x
(Input) - Point at which the Bessel function is to be evaluated.
Return Value¶
The value of the Bessel function
\[I_1(x) = \tfrac{1}{\pi} \int_0^{\pi} e^{x \cos \theta} \cos \theta d \theta\]
If no solution can be computed, NaN is returned.
Description¶
For large \(|x|\), besselI1
will overflow. It will underflow near
zero.
Example¶
The Bessel function \(I_1(1.5)\) is evaluated.
from __future__ import print_function
from numpy import *
from pyimsl.math.besselI1 import besselI1
x = 1.5
ans = besselI1(x)
print("I1(%f) = %f" % (x, ans))
Output¶
I1(1.500000) = 0.981666
Alert Errors¶
IMSL_SMALL_ABS_ARG_UNDERFLOW |
The argument should not be so close to zero that \(I_1(x)\approx x/2\) underflows. |
Fatal Errors¶
IMSL_LARGE_ABS_ARG_FATAL |
The absolute value of x must not be so large that \(e^{|x|}\) overflows. |