besselExpK0¶
Evaluates the exponentially scaled modified Bessel function of the second kind of order zero.
Synopsis¶
besselExpK0 (x)
Required Arguments¶
- float
x
(Input) - Point at which the Bessel function is to be evaluated.
Return Value¶
The value of the scaled Bessel function exK0(x). If no solution can be computed, NaN is returned.
Description¶
The argument must be greater than zero for the result to be defined. The Bessel function K0(x) is defined to be
K0(x)=∫∞0cos(xsinht)dt
Example¶
The expression
√eK0(0.5)
is computed directly by calling besselExpK0
and indirectly by calling
besselK0
. The absolute difference is printed. For large x
, the
internal scaling provided by besselExpK0
avoids underflow that may occur
in besselK0
.
from __future__ import print_function
from numpy import *
from pyimsl.math.besselExpK0 import besselExpK0
from pyimsl.math.besselK0 import besselK0
x = 0.5
ans = besselExpK0(x)
print("(e**(0.5))K0(0.5) = %f" % (ans))
error = abs(ans - (exp(-x) * besselK0(x)))
print("Error = %e" % (error))
Output¶
(e**(0.5))K0(0.5) = 1.524109
Error = 9.634209e-01