beta

Evaluates the real beta function \(\beta(x,y)\).

Synopsis

beta (x, y)

Required Arguments

float x (Input)
Point at which the beta function is to be evaluated. It must be positive.
float y (Input)
Point at which the beta function is to be evaluated. It must be positive.

Return Value

The value of the beta function \(\beta(x,y)\). If no result can be computed, NaN is returned.

Description

The beta function, \(\beta(x,y)\), is defined to be

\[\beta(x,y) = \frac{\mathit{\Gamma}(x)\mathit{\Gamma}(y)}{\mathit{\Gamma}(x+y)} = \int_0^1 t^{x-1} (1-t)^{y-1} dt\]

The beta function requires that x > 0 and y > 0. It underflows for large arguments.

../../_images/Fig9-5.png

Figure 9.12 — Plot of \(\beta(x,y)\)

Example

Evaluate the beta function \(\beta(0.5,0.2)\).

from __future__ import print_function
from numpy import *
from pyimsl.math.beta import beta

x = 0.5
y = 0.2
ans = beta(x, y)
print("beta(%f,%f) = %f" % (x, y, ans))

Output

beta(0.500000,0.200000) = 6.268653

Alert Errors

IMSL_BETA_UNDERFLOW The arguments must not be so large that the result underflows.

Fatal Errors

IMSL_ZERO_ARG_OVERFLOW One of the arguments is so close to zero that the result overflows.