erfcInverse¶
Evaluates the real inverse complementary error function \(erfc^{-1}(x)\).
Synopsis¶
erfcInverse (x)
Required Arguments¶
- float
x
(Input) - Point at which the inverse complementary error function is to be
evaluated. The argument x must be in the range 0 <
x
< 2.
Return Value¶
The value of the inverse complementary error function.
Description¶
The inverse complementary error function \(y=erfc^{-1}(x)\) is such that \(x = erfc(y)\) where
\[\mathrm{erfc}(y) = \frac{2}{\sqrt{\pi}} \int_y^{\infty} e^{-t^2} dt\]
Figure 9.11 — Plot of \(erfc^{-1}(x)\)
Example¶
Evaluate the inverse complementary error function at \(x=1/2\).
from __future__ import print_function
from numpy import *
from pyimsl.math.erfcInverse import erfcInverse
x = 0.5
ans = erfcInverse(x)
print("Inverse erfc(%f) = %f" % (x, ans))
Output¶
Inverse erfc(0.500000) = 0.476936
Alert Errors¶
IMSL_LARGE_ARG_UNDERFLOW |
The argument \(2-\sqrt{\varepsilon/(4 \pi)}\) where ɛ is the machine precision. |
Warning Errors¶
IMSL_LARGE_ARG_WARN |
\(|x|\) should be less than \(1/\sqrt{\varepsilon}\) where ɛ is the machine precision, to prevent the answer from being less accurate than half precision. |
Fatal Errors¶
IMSL_ERF_ALGORITHM |
The algorithm failed to converge. |
IMSL_SMALL_ARG_OVERFLOW |
The computation of \(e^{x^2} \text{erfc } x\) must not overflow. |
IMSL_REAL_OUT_OF_RANGE |
The function is defined only for 0 <
x < 2. |