erfc¶
Evaluates the real complementary error function erfc(x).
Synopsis¶
erfc (x)
Required Arguments¶
- float
x
(Input) - Point at which the complementary error function is to be evaluated.
Return Value¶
The value of the complementary error function erfc(x
).
Description¶
The complementary error function erfc(x
) is defined to be
\[\mathrm{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} dt\]
The argument x must not be so large that the result underflows.
Approximately, x
should be less than
\[\left[-\ln(\sqrt{\pi}s)\right]^{1/2}\]
where s is the smallest representable floating-point number.
Figure 9.9 — Plot of erfc(x)
Example¶
Evaluate the error function at \(x=1/2\).
from __future__ import print_function
from numpy import *
from pyimsl.math.erfc import erfc
x = 0.5
ans = erfc(x)
print("erfc(%f) = %f" % (x, ans))
Output¶
erfc(0.500000) = 0.479500
Alert Errors¶
IMSL_LARGE_ARG_UNDERFLOW |
The argument x is so large that the result underflows. |