erfe¶
Evaluates a scaled function related to erfc(z).
Synopsis¶
erfe (z)
Required Arguments¶
- complex
z
(Input) - Complex argument for which the function value is desired.
Return Value¶
Complex scaled function value related to erfc(z).
Description¶
Function erfe
is defined to be
\[e^{-z^2} \mathrm{erfc}(-iz) = -ie^{-z^2}
\frac{2}{\sqrt{\pi}} \int_z^{\infty} e^{t^2} dt\]
Let b =machine
(2) be the largest floating-point number. The
argument z
must satisfy
\[|z| \leq \sqrt{b}\]
or else the value returned is zero. If the argument z
does not satisfy
\[(ℑz)^2 - (ℜz)^2 ≤ \log b,\]
then b is returned. All other arguments are legal (Gautschi 1969, 1970).
For more information, see the description for machine.
Example¶
In this example, erfe
(2.5 +2.5i) is computed and printed.
from __future__ import print_function
from numpy import *
from pyimsl.math.erfe import erfe
z = 2.5 + 2.5j
value = erfe(z)
print("erfe(%2.3f + %2.3fi) = %2.3f + %2.3fi"
% (z.real, z.imag, value.real, value.imag))
Output¶
erfe(2.500 + 2.500i) = 0.117 + 0.108i