erfInverse

Evaluates the real inverse error function \(erf^{-1}(x)\).

Synopsis

erfInverse (x)

Required Arguments

float x (Input)
Point at which the inverse error function is to be evaluated. It must be between −1 and 1.

Return Value

The value of the inverse error function \(erf^{-1}(x)\).

Description

The inverse error function \(erf^{-1}(x)\) is such that \(x=erf(y)\), where

\[\mathrm{erf}(y) = \frac{2}{\sqrt{\pi}} \int_0^y e^{-t^2} dt\]

The inverse error function is defined only for \(-1<x<1\).

../../_images/Fig9-3.png

Figure 9.10 — Plot of \(erf^{-1}(x)\)

Example

Evaluate the inverse error function at \(x=1/2\).

from __future__ import print_function
from numpy import *
from pyimsl.math.erfInverse import erfInverse

x = 0.5
ans = erfInverse(x)
print("Inverse erf(%f) = %f" % (x, ans))

Output

Inverse erf(0.500000) = 0.476936

Warning Errors

IMSL_LARGE_ABS_ARG_WARN The answer is less accurate than half precision because \(|x|\) large.

Fatal Errors

IMSL_REAL_OUT_OF_RANGE The inverse error function is defined only for −1 < x < 1.