erfInverse¶
Evaluates the real inverse error function erf−1(x).
Synopsis¶
erfInverse (x)
Required Arguments¶
- float
x
(Input) - Point at which the inverse error function is to be evaluated. It must be between −1 and 1.
Return Value¶
The value of the inverse error function erf−1(x).
Description¶
The inverse error function erf−1(x) is such that x=erf(y), where
erf(y)=2√π∫y0e−t2dt
The inverse error function is defined only for −1<x<1.

Figure 9.10 — Plot of erf−1(x)
Example¶
Evaluate the inverse error function at x=1/2.
from __future__ import print_function
from numpy import *
from pyimsl.math.erfInverse import erfInverse
x = 0.5
ans = erfInverse(x)
print("Inverse erf(%f) = %f" % (x, ans))
Output¶
Inverse erf(0.500000) = 0.476936
Warning Errors¶
IMSL_LARGE_ABS_ARG_WARN |
The answer is less accurate than half precision because |x| large. |
Fatal Errors¶
IMSL_REAL_OUT_OF_RANGE |
The inverse error function is defined
only for −1 < x < 1. |