nonCentralChiSqInv

Evaluates the inverse of the noncentral chi-squared function.

Synopsis

nonCentralChiSqInv (p, df, delta)

Required Arguments

float p (Input)
Probability for which the inverse of the noncentral chi-squared distribution function is to be evaluated. p must be in the open interval (0.0, 1.0).

float df (Input)Number of degrees of freedom of the noncentral chi-squared distribution. Argument df must be greater than 0.

float delta (Input)
The noncentrality parameter. delta must be nonnegative, and delta + df must be less than or equal to 200,000.

Return Value

The probability that a noncentral chi-squared random variable takes a value less than or equal to nonCentralChiSqInv is p.

Description

Function nonCentralChiSqInv evaluates the inverse distribution function of a noncentral chi-squared random variable with df degrees of freedom and noncentrality parameter delta; that is, with P = p, v = df, and λ = delta, it determines c0 (= nonCentralChiSqInv (p, df, delta)), such that

P=i=0eλ/2(λ/2)ii!c00x(v+2i)/21ex/22(v+2i)/2Γ(v+2i2)dx

where Γ (⋅) is the gamma function. In other words:

F1(P|df,delta)=x

The probability that the random variable takes a value less than or equal to c0 is P.

Function nonCentralChiSqInv uses bisection and modified regula falsi to invert the distribution function, which is evaluated using function nonCentralChiSq. See nonCentralChiSq for an alternative definition of the noncentral chi-squared random variable in terms of normal random variables.

Example

In this example, we find the 95-th percentage point for a noncentral chi-squared random variable with 2 degrees of freedom and noncentrality parameter 1.

from __future__ import print_function
from numpy import *
from pyimsl.stat.nonCentralChiSqInv import nonCentralChiSqInv

p = 0.95
df = 2.0
delta = 1.0
chi_squared = nonCentralChiSqInv(p, df, delta)
print("The 0.05 noncentral chi-squared critical value is %6.4f." % chi_squared)

Output

The 0.05 noncentral chi-squared critical value is 8.6422.