nonCentralChiSqPdf

Evaluates the noncentral chi-squared probability density function.

Synopsis

nonCentralChiSqPdf (x, df, t_lambda)

Required Arguments

float x (Input)
Argument for which the noncentral chi-squared probability density function is to be evaluated. x must be greater than or equal to 0.
float df (Input)
Number of degrees of freedom of the noncentral chi-squared distribution. df must be greater than 0.
float t_lambda (Input)
Noncentrality parameter. t_lambda must be greater than or equal to 0.

Return Value

The probability density associated with a noncentral chi-squared random variable with value x.

Description

The noncentral chi‑squared distribution is a generalization of the chi-squared distribution. If {Xi} are k independent, normally distributed random variables with means μi and variances σ2i, then the random variable:

X=ki=1(Xiσi)2

is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has two parameters: k which specifies the number of degrees of freedom (i.e. the number of Xi), and λ which is related to the mean of the random variables Xi by:

λ=ki=1(μiσi)2

The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with k + 2i degrees of freedom, where i is the value of a Poisson distributed random variable with parameter λ / 2. Thus, the probability density function is given by:

F(x|k,λ)=i=0eλ/2(λ/2)ii!f(x,k+2i)

where the (central) chi-squared PDF f(xk) is given by:

f(x|k)=(x/2)k/2ex/2xΓ(k/2) for x>0, else 0

where Γ (⋅) is the gamma function. The above representation of F(xk, λ) can be shown to be equivalent to the representation:

F(x|k,λ)=e(λ+x)/2(x/2)k/2xi=0ϕi
ϕi=(λx/4)ii!Γ(k/2+i)

Function nonCentralChiSqPdf evaluates the probability density function of a noncentral chi-squared random variable with df degrees of freedom and noncentrality parameter t_lambda, corresponding to k = df, λ = t_lambda, and x = x.

Function nonCentralChiSq evaluates the cumulative distribution function incorporating the above probability density function.

With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central chi-squared distribution.

Example

This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of freedom and noncentrality parameter λ=40.

from __future__ import print_function
from numpy import *
from pyimsl.stat.nonCentralChiSqPdf import nonCentralChiSqPdf

x = [0, 8, 40, 136, 280, 400]
df = 100
lamb = 40.0

print("df: %4.0f;  lambda: %4.0f" % (df, lamb))
print("    x       pdf(x)")

for i in range(0, 6):
    pdfv = nonCentralChiSqPdf(x[i], df, lamb)
    print(" %5.0f  %12.4e" % (x[i], pdfv))

Output

df:  100;  lambda:   40
    x       pdf(x)
     0    0.0000e+00
     8    4.7548e-44
    40    3.4621e-14
   136    2.1092e-02
   280    4.0027e-10
   400    1.1250e-22