nonCentralChiSqPdf¶
Evaluates the noncentral chi-squared probability density function.
Synopsis¶
nonCentralChiSqPdf (x, df, t_lambda)
Required Arguments¶
- float
x
(Input) - Argument for which the noncentral chi-squared probability density
function is to be evaluated.
x
must be greater than or equal to 0. - float
df
(Input) - Number of degrees of freedom of the noncentral chi-squared distribution.
df
must be greater than 0. - float
t_lambda
(Input) - Noncentrality parameter.
t_lambda
must be greater than or equal to 0.
Return Value¶
The probability density associated with a noncentral chi-squared random
variable with value x
.
Description¶
The noncentral chi‑squared distribution is a generalization of the chi-squared distribution. If \(\{X_i\}\) are k independent, normally distributed random variables with means \(\mu_i\) and variances \(\sigma^2_i\), then the random variable:
is distributed according to the noncentral chi-squared distribution. The noncentral chi-squared distribution has two parameters: k which specifies the number of degrees of freedom (i.e. the number of \(X_i\)), and λ which is related to the mean of the random variables \(X_i\) by:
The noncentral chi-squared distribution is equivalent to a (central) chi-squared distribution with k + 2i degrees of freedom, where i is the value of a Poisson distributed random variable with parameter λ / 2. Thus, the probability density function is given by:
where the (central) chi-squared PDF f(x∣k) is given by:
where Γ (⋅) is the gamma function. The above representation of F(x∣k, λ) can be shown to be equivalent to the representation:
Function nonCentralChiSqPdf
evaluates the probability density function
of a noncentral chi-squared random variable with df
degrees of freedom
and noncentrality parameter t_lambda
, corresponding to k = df
, λ =
t_lambda
, and x = x
.
Function nonCentralChiSq evaluates the cumulative distribution function incorporating the above probability density function.
With a noncentrality parameter of zero, the noncentral chi-squared distribution is the same as the central chi-squared distribution.
Example¶
This example calculates the noncentral chi-squared distribution for a distribution with 100 degrees of freedom and noncentrality parameter \(\lambda=40\).
from __future__ import print_function
from numpy import *
from pyimsl.stat.nonCentralChiSqPdf import nonCentralChiSqPdf
x = [0, 8, 40, 136, 280, 400]
df = 100
lamb = 40.0
print("df: %4.0f; lambda: %4.0f" % (df, lamb))
print(" x pdf(x)")
for i in range(0, 6):
pdfv = nonCentralChiSqPdf(x[i], df, lamb)
print(" %5.0f %12.4e" % (x[i], pdfv))
Output¶
df: 100; lambda: 40
x pdf(x)
0 0.0000e+00
8 4.7548e-44
40 3.4621e-14
136 2.1092e-02
280 4.0027e-10
400 1.1250e-22