nonCentralFPdf

Evaluates the noncentral F probability density function (PDF).

Synopsis

nonCentralFPdf (f, dfNumerator, dfDenominator,  t_lambda)

Required Arguments

float f (Input)
Argument for which the noncentral F probability density function is to be evaluated. f must be non-negative.
float dfNumerator (Input)
Numerator degrees of freedom of the noncentral F distribution. dfNumerator must be positive.
float dfDenominator (Input)
Denominator degrees of freedom of the noncentral F distribution. dfDenominator must be positive.
float t_lambda (Input)
Noncentrality parameter. t_ambda must be non-negative.

Return Value

The probability density associated with a noncentral F random variable with value f.

Description

If X is a noncentral chi-square random variable with noncentrality parameter λ and ν1 degrees of freedom, and Y is a chi-square random variable with ν2 degrees of freedom which is statistically independent of X, then

F=(X/v1)/(Y/v2)

is a noncentral F-distributed random variable whose PDF is given by

PDF(f|ν1,ν2,λ)=Ψk=0ϕk

where

Ψ=eλ/2(ν1f)v1/2(ν2)v2/2f(ν1f+ν2)(ν1+ν2)/2Γ(ν2/2)
ϕk=RkΓ(ν1+ν22+k)k!Γ(ν12+k)
R=λν1f2(ν1f+ν2)

and Γ() is the gamma function, ν1 = dfNumerator, ν2 = dfDenominator, λ= t_lambda, and f = f.

With a noncentrality parameter of zero, the noncentral F distribution is the same as the F distribution.

The efficiency of the calculation of the above series is enhanced by:

  1. calculating each term Φk in the series recursively in terms of either the term Φk1 preceding it or the term Φk+1 following it, and.
  2. initializing the sum with the largest series term and adding the subsequent terms in order of decreasing magnitude

Special cases:

For R=λf=0:\rule1em0exPDF(f|v1,v2,λ)=ΨΦ0=ΨΓ([v1+v2]/2)Γ(v1/2)For λ=0:\rule1em0exPDF(f|v1,v2,λ)=(v1f)v1/2(v2)v2/2Γ([v1+v2]/2)f(v1f+v2)(v1+v2)/2Γ(v1/2)Γ(v2/2)For f=0:\rule1em0exPDF(f|v1,v2,λ)=eλ/2fv1/21(v1/v2)v1/2Γ([v1+v2]/2)Γ(v1/2)Γ(v2/2)={0 if v1>2;eλ/2 if v1=2 if v1<2

Example

This example traces out a portion of a noncentral F distribution with parameters dfNumerator = 100, dfDenominator = 10, and t_lambda = 10.

from __future__ import print_function
from numpy import *
from pyimsl.stat.nonCentralFPdf import nonCentralFPdf

f = [0., .4, .8, 3.2, 5.6, 8.8, 14., 18.]
df_numerator = 100.
df_denominator = 10.
lamb = 10.

print("df_numerator:   %4.0f" % (df_numerator))
print("df_denominator: %4.0f" % (df_denominator))
print("lambda:         %4.0f\n" % (lamb))
print("    f       pdf(f)")

for i in range(0, 8):
    pdfv = nonCentralFPdf(f[i], df_numerator, df_denominator, lamb)
    print(" %5.1f  %12.4e" % (f[i], pdfv))

Output

df_numerator:    100
df_denominator:   10
lambda:           10

    f       pdf(f)
   0.0    0.0000e+00
   0.4    9.7488e-02
   0.8    8.1312e-01
   3.2    3.6948e-02
   5.6    2.8302e-03
   8.8    2.7661e-04
  14.0    2.1963e-05
  18.0    5.3483e-06