poissonPdf¶
Evaluates the Poisson probability function.
Synopsis¶
poissonPdf (k, theta)
Required Arguments¶
- int
k
(Input) - Argument for which the Poisson distribution function is to be evaluated.
- float
theta
(Input) - Mean of the Poisson distribution.
theta
must be positive.
Return Value¶
Function value, the probability that a Poisson random variable takes a value
equal to k
.
Description¶
Function poissonPdf
evaluates the probability function of a Poisson
random variable with parameter theta
. theta
, which is the mean of
the Poisson random variable, must be positive. The probability function
(with θ = theta
) is
\[f(x|θ) = e^{-θ} θ^k/k!, \phantom{...} \text{ for } k = 0, 1, 2,...\]
poissonPdf
evaluates this function directly, taking logarithms and
using the log gamma function.
Figure 11.2 — Poisson Probability Function
Example¶
Suppose X is a Poisson random variable with \(\theta=10\). In this example, we evaluate the probability function at 7.
from __future__ import print_function
from numpy import *
from pyimsl.stat.poissonPdf import poissonPdf
k = 7
theta = 10.0
pr = poissonPdf(k, theta)
print("The probability that X is equal to 7 is %6.4f" % pr)
Output¶
The probability that X is equal to 7 is 0.0901