beta¶
Evaluates the complete beta function.
Synopsis¶
beta (a, b)
Required Arguments¶
- float
a
(Input) - First beta parameter. It must be positive.
- float
b
(Input) - Second beta parameter. It must be positive.
Return Value¶
The value of the beta function β(a
, b
). If no result can be
computed, then NaN is returned.
Description¶
The beta function, β(a
, b
), is defined to be
\[\beta(a,b) = \frac{\mathit{\Gamma}(a)\mathit{\Gamma}(b)}{\mathit{\Gamma}(a+b)} =
\int_0^1 t^{a-1} (1-t)^{b-1} dt\]
Example¶
Evaluate the beta function β(0.5, 0.2).
from __future__ import print_function
from pyimsl.stat.beta import beta
x = 0.5
y = 0.2
ans = beta(x, y)
print("beta(%f,%f) = %f\n" % (x, y, ans))
Output¶
beta(0.500000,0.200000) = 6.268653
Figure 15.1 — Plot of β (x, b)
The beta function requires that a > 0 and b > 0. It underflows for large arguments.
Alert Errors¶
IMSLS_BETA_UNDERFLOW |
The arguments must not be so large that the result underflows. |
Fatal Errors¶
IMSLS_ZERO_ARG_OVERFLOW |
One of the arguments is so close to zero that the result overflows. |