Chapter 2: Regression > regression_summary

regression_summary

Produces summary statistics for a regression model given the information from the fit.

Synopsis

#include <imsls.h>

void imsls_f_regression_summary (Imsls_f_regression *regression_info, ..., 0)

The type double function is imsls_d_regression_summary.

Required Argument

Imsls_f_regression *regression_info   (Input)
Pointer to a structure of type Imsls_f_regression containing information about the regression fit. See imsls_f_regression.

Synopsis with Optional Arguments

#include <imsls.h>

void imsls_f_regression_summary (Imsls_f_regression *regression_info,
IMSLS_INDEX_REGRESSION, int idep,
IMSLS_COEF_T_TESTS, float **coef_t_tests
IMSLS_COEF_T_TESTS_USER, float coef_t_tests[],
IMSLS_COEF_COL_DIM, int coef_col_dim,
IMSLS_COEF_VIF, float **coef_vif,
IMSLS_COEF_VIF_USER, float coef_vif[],
IMSLS_COEF_COVARIANCES, float **coef_covariances,
IMSLS_COEF_COVARIANCES_USER, float coef_covariances[],
IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim,
IMSLS_ANOVA_TABLE, float **anova_table,
IMSLS_ANOVA_TABLE_USER, float anova_table[],
0)

Optional Arguments

IMSLS_INDEX_REGRESSION, int idep   (Input)s
Given a multivariate regression fit, this option allows the user to specify for which regression summary statistics will be computed.
Default: idep = 0

IMSLS_COEF_T_TESTS, float **coef_t_tests   (Output)
Address of a pointer to the npar × 4 array containing statistics relating to the regression coefficients, where npar is equal to the number of parameters in the model.

            Each row (for each dependent variable) corresponds to a coefficient in the model, where npar is the number of parameters in the model. Row i + intcep corresponds to the i-th independent variable, where intcep is equal to 1 if an intercept is in the model and 0 otherwise, for i = 0, 1, 2, , npar – 1.

The statistics in the columns are as follows:

 

Column

Description

0

coefficient estimate

1

estimated standard error of the coefficient estimate

2

t-statistic for the test that the coefficient is 0

3

p-value for the two-sided t test

IMSLS_COEF_T_TESTS_USER, float coef_t_tests[]   (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_T_TESTS.

IMSLS_COEF_COL_DIM, int coef_col_dim   (Input)
Column dimension of coef_t_tests.
Default: coef_col_dim = 4

IMSLS_COEF_VIF, float **coef_vif   (Output)
Address of a pointer to an internally allocated array of length npar containing the vari­ance inflation factor, where npar is the number of parameters. The intcep-th column corresponds to the i-th independent variable, where = 0, 1, 2, npar - 1, and intcep is equal to 1 if an intercept is in the model and 0 otherwise.

            The square of the multiple correlation coefficient for the i-th regressor after all others can be obtained from coef_vif by

            If there is no intercept, or there is an intercept and = 0, the multiple correlation coef­ficient is not adjusted for the mean.

IMSLS_COEF_VIF_USER, float coef_vif[]   (Output)
Storage for array coef_t_tests is provided by the user. See IMSLS_COEF_VIF.

IMSLS_COEF_COVARIANCES, float **coef_covariances   (Output)
An npar by npar (where npar is equal to the number of parameters in the model) array that is the estimated variance-covariance matrix of the estimated regression coefficients when R is nonsingular and is from an unrestricted regression fit. See “Remarks” for an explanation of coef_covariances when R is singular and is from a restricted regression fit.

IMSLS_COEF_COVARIANCES_USER, float coef_covariances[]   (Output)
Storage for coef_covariances is provided by the user. See IMSLS_COEF_COVARIANCES.

IMSLS_COEF_COV_COL_DIM, int coef_cov_col_dim   (Input)
Column dimension of coef_covariances.
Default: coef_cov_col_dim = the number of parameters in the model

IMSLS_ANOVA_TABLE, float **anova_table   (Output)
Address of a pointer to the array of size 15 containing the analysis of variance table.

 

Row

Analysis of Variance Statistic

0

degrees of freedom for the model

1

degrees of freedom for error

2

total (corrected) degrees of freedom

3

sum of squares for the model

4

sum of squares for error

5

total (corrected) sum of squares

6

model mean square

7

error mean square

8

overall F-statistic

9

p-value

10

R2(in percent)

11

adjusted R2 (in percent)

12

estimate of the standard deviation

13

overall mean of y

14

coefficient of variation (in percent)

            If the model has an intercept, the regression and total are corrected for the mean; otherwise, the regression and total are not corrected for the mean, and anova_table[13] and anova_table[14] are set to NaN. Note that the p-value is returned as 0.0 when the value is so small that all significant digits have been lost.

IMSLS_ANOVA_TABLE_USER, float anova_table[]   (Output)
Storage for array anova_table is provided by the user. See IMSLS_ANOVA_TABLE.

Description

Function imsls_f_regression_summary computes summary statistics from a fitted general linear model. The model is Xβ + ɛ, where y is the n × 1 vector of responses, X is the n × p matrix of regressors, β is the p × 1 vector of regression coefficients, and ɛ is the n × 1 vector of errors whose elements are each independently distributed with mean 0 and variance σ2. Function regression can be used to compute the fit of the model. Next, imsls_f_regression_summary uses the results of this fit to compute summary statistics, including analysis of variance, sequential sum of squares, t tests, and an estimated variance-covariance matrix of the estimated regression coefficients.

Some generalizations of the general linear model are allowed. If the i-th element of ɛ has vari­ance of

and the weights wi are used in the fit of the model, imsls_f_regression_summary produces summary statistics from the weighted least-squares fit. More generally, if the variance-covariance matrix of ɛ is σ2V, imsls_f_regression_summary can be used to produce summary statistics from the generalized least-squares fit. Function regression can be used to perform a generalized least-squares fit, by regressing y* on X* where y* = (T 1)TyX* = (T-1)TX and T satisfies TTV.

The sequential sum of squares for the i-th regression parameter is given by

The regression sum of squares is given by the sum of the sequential sums of squares. If an intercept is in the model, the regression sum of squares is adjusted for the mean, i.e.,

is not included in the sum.

The estimate of σ2 is s2 (stored in anova_table[7]) that is computed as SSE/DFE.

If R is nonsingular, the estimated variance-covariance matrix of

(stored in coef_covariances) is computed by s2R-1(R-1)T.

If R is singular, corresponding to rank(X) < p, a generalized inverse is used. For a matrix G to be a gi (= 1, 2, 3, or 4) inverse of a matrix A, G must satisfy conditions j (for j  i) for the Moore-Penrose inverse but generally must fail conditions k (for i). The four conditions for G to be a Moore-Penrose inverse of A are as follows:

1.     AGA = A.

2.     GAG = G.

3.     AG is symmetric.

4.     GA is symmetric.

In the case where R is singular, the method for obtaining coef_covariances follows the dis­cussion of Maindonald (1984, pp. 101–103). Let Z be the diagonal matrix with diagonal elements defined by the following:

Let G be the solution to RG = Z obtained by setting the i-th ({i : rii = 0}) row of G to 0. Argument coef_covariances is set to s2GGT. (G is a g3 inverse of R, represented by,

the result

is a symmetric g2 inverse of RTXTX. See Sallas and Lionti 1988.)

Note that argument coef_covariances can be used only to get variances and covariances of estimable functions of the regression coefficients, i.e., nonestimable functions (linear combina­tions of the regression coefficients not in the space spanned by the nonzero rows of R) must not be used. See, for example, Maindonald (1984, pp. 166–168) for a discussion of estimable functions.

The estimated standard errors of the estimated regression coefficients (stored in Column 1 of coef_t_tests) are computed as square roots of the corresponding diagonal entries in coef_covariances.

For the case where an intercept is in the model, put  equal to the matrix R with the first row and column deleted. Generally, the variance inflation factor (VIF) for the i-th regression coefficient is computed as the product of the i-th diagonal element of RTR and the i-th diagonal element of its computed inverse. If an intercept is in the model, the VIF for those coefficients not corresponding to the intercept uses the diagonal elements of  (see Maindonald 1984, p. 40).

Remarks

When R is nonsingular and comes from an unrestricted regression fit, coef_covariances is the estimated variance-covariance matrix of the estimated regression coefficients, and coef_covariances = (SSE/DFE) (RTR). Otherwise, variances and covariances of estimable functions of the regression coefficients can be obtained using coef_covariances, and coef_covariances = (SSE/DFE) (GDGT). Here, D is the diagonal matrix with diagonal ele­ments equal to 0 if the corresponding rows of R are restrictions and with diagonal elements equal to 1 otherwise. Also, G is a particular generalized inverse of R.

Example

 

#include <imsls.h>

 

int main()

{

#define INTERCEPT       1

#define N_INDEPENDENT   4

#define N_OBSERVATIONS  13

#define N_COEFFICIENTS  (INTERCEPT + N_INDEPENDENT)

#define N_DEPENDENT     1

 

    Imsls_f_regression   *regression_info;

    float       *anova_table, *coef_t_tests, *coef_vif,

                *coefficients, *coef_covariances;

    float       x[][N_INDEPENDENT] = {

        7.0, 26.0,  6.0, 60.0,

        1.0, 29.0, 15.0, 52.0,

       11.0, 56.0,  8.0, 20.0,

       11.0, 31.0,  8.0, 47.0,

        7.0, 52.0,  6.0, 33.0,

       11.0, 55.0,  9.0, 22.0,

        3.0, 71.0, 17.0,  6.0,

        1.0, 31.0, 22.0, 44.0,

        2.0, 54.0, 18.0, 22.0,

       21.0, 47.0,  4.0, 26.0,

        1.0, 40.0, 23.0, 34.0,

       11.0, 66.0,  9.0, 12.0,

       10.0, 68.0,  8.0, 12.0};

    float        y[] = {78.5, 74.3, 104.3, 87.6, 95.9, 109.2,

       102.7, 72.5, 93.1, 115.9, 83.8, 113.3, 109.4};

    char        *anova_row_labels[] = {

                   "degrees of freedom for regression",

                   "degrees of freedom for error",

                   "total (uncorrected) degrees of freedom",

                   "sum of squares for regression",

                   "sum of squares for error",

                   "total (uncorrected) sum of squares",

                   "regression mean square",

                   "error mean square", "F-statistic",

                   "p-value", "R-squared (in percent)",

                   "adjusted R-squared (in percent)",

                   "est. standard deviation of model error",

                   "overall mean of y",

                   "coefficient of variation (in percent)"};

 

                                /* Fit the regression model */

    coefficients = imsls_f_regression(N_OBSERVATIONS, N_INDEPENDENT,

        (float *)x, y,

        IMSLS_REGRESSION_INFO, &regression_info,

        0);

 

                                /* Generate summary statistics */

    imsls_f_regression_summary (regression_info,

        IMSLS_ANOVA_TABLE, &anova_table,

        IMSLS_COEF_T_TESTS, &coef_t_tests,

        IMSLS_COEF_VIF, &coef_vif,

        IMSLS_COEF_COVARIANCES, &coef_covariances,

        0);

 

                                /* Print results */

    imsls_f_write_matrix("* * * Analysis of Variance * * *\n", 15, 1,

        anova_table,

        IMSLS_ROW_LABELS, anova_row_labels,

        IMSLS_WRITE_FORMAT, "%10.2f", 0);

 

    imsls_f_write_matrix("* * * Inference on Coefficients * * *\n",

        N_COEFFICIENTS, 4, coef_t_tests,

        IMSLS_WRITE_FORMAT, "%10.2f", 0);

 

    imsls_f_write_matrix("* * * Variance Inflation Factors * * *\n",

        N_COEFFICIENTS, 1, coef_vif,

        IMSLS_WRITE_FORMAT, "%10.2f", 0);

 

    imsls_f_write_matrix("* * * Variance-Covariance Matrix * * *\n",

        N_COEFFICIENTS, N_COEFFICIENTS,

        coef_covariances,

        IMSLS_WRITE_FORMAT, "%10.2f", 0);

}

Output

         * * * Analysis of Variance * * *

degrees of freedom for regression             4.00

degrees of freedom for error                  8.00

total (uncorrected) degrees of freedom       12.00

sum of squares for regression              2667.90

sum of squares for error                     47.86

total (uncorrected) sum of squares         2715.76

regression mean square                      666.97

error mean square                             5.98

F-statistic                                 111.48

p-value                                       0.00

R-squared (in percent)                       98.24

adjusted R-squared (in percent)              97.36

est. standard deviation of model error        2.45

overall mean of y                            95.42

coefficient of variation (in percent)         2.56

 

     * * * Inference on Coefficients * * *

 

            1           2           3           4

1       62.41       70.07        0.89        0.40

2        1.55        0.74        2.08        0.07

3        0.51        0.72        0.70        0.50

4        0.10        0.75        0.14        0.90

5       -0.14        0.71       -0.20        0.84

 

* * * Variance Inflation Factors * * *

 

             1    10668.53

             2       38.50

             3      254.42

             4       46.87

             5      282.51

 

 

           * * * Variance-Covariance Matrix * * *

 

            1           2           3           4           5

1     4909.95      -50.51      -50.60      -51.66      -49.60

2      -50.51        0.55        0.51        0.55        0.51

3      -50.60        0.51        0.52        0.53        0.51

4      -51.66        0.55        0.53        0.57        0.52

5      -49.60        0.51        0.51        0.52        0.50


RW_logo.jpg
Contact Support