SPLEZ
Computes the values of a spline that either interpolates or fits user-supplied data.
Required Arguments
XDATA — Array of length NDATA containing the data point abscissae. (Input)
The data point abscissas must be distinct.
FDATA — Array of length NDATA containing the data point ordinates. (Input)
XVEC — Array of length N containing the points at which the spline function values are desired. (Input)
The entries of XVEC must be distinct.
VALUE — Array of length N containing the spline values. (Output)
VALUE (I) = S(XVEC (I)) if IDER = 0, VALUE(I) = Sʹ(XVEC (I)) if IDER = 1, and so forth, where S is the computed spline.
Optional Arguments
NDATA — Number of data points. (Input)
Default: NDATA = size (XDATA,1).
All choices of ITYPE are valid if NDATA is larger than 6. More specifically,
NDATA > ITYPE | for ITYPE = 1. |
NDATA > 3 | or ITYPE = 2, 3. |
NDATA > (ITYPE − 3) | for ITYPE = 4, 5, 6, 7, 8. |
NDATA > 3 | for ITYPE = 9, 10, 11, 12. |
NDATA > KORDER | for ITYPE = 13, 14, 15. |
ITYPE — Type of interpolant desired. (Input)
Default: ITYPE = 1.
ITYPE
1 | yields CSINT |
2 | yields CSAKM |
3 | yields CSCON |
4 | yields BSINT-BSNAK K = 2 |
5 | yields BSINT-BSNAK K = 3 |
6 | yields BSINT-BSNAK K = 4 |
7 | yields BSINT-BSNAK K = 5 |
8 | yields BSINT-BSNAK K = 6 |
9 | yields CSSCV |
10 | yields BSLSQ K = 2 |
11 | yields BSLSQ K = 3 |
12 | yields BSLSQ K = 4 |
13 | yields BSVLS K = 2 |
14 | yields BSVLS K = 3 |
15 | yields BSVLS K = 4 |
IDER — Order of the derivative desired. (Input)
Default: IDER = 0.
N — Number of function values desired. (Input)
Default: N = size (XVEC,1).
FORTRAN 90 Interface
Generic: CALL SPLEZ (XDATA, FDATA, XVEC, VALUE [, …])
Specific: The specific interface names are S_SPLEZ and D_SPLEZ.
FORTRAN 77 Interface
Single: CALL SPLEZ (NDATA, XDATA, FDATA, ITYPE, IDER, N, XVEC, VALUE)
Double: The double precision name is DSPLEZ.
Description
This routine is designed to let the user experiment with various interpolation and smoothing routines in the library.
The routine SPLEZ computes a spline interpolant to a set of data points (xi, fi) for i = 1, …, NDATA if ITYPE = 1, …, 8. If ITYPE ≥ 9, various smoothing or least squares splines are computed. The output for this routine consists of a vector of values of the computed spline or its derivatives. Specifically, let i = IDER, n = N, v = XVEC, and y = VALUE, then if s is the computed spline we set
yj = s(i)(vj) j = 1, …, n
The routines called are listed above under the ITYPE heading. Additional documentation can be found by referring to these routines.
Example
In this example, all the ITYPE parameters are exercised. The values of the spline are then compared with the exact function values and derivatives.
USE IMSL_LIBRARIES
IMPLICIT NONE
INTEGER NDATA, N
PARAMETER (NDATA=21, N=2*NDATA-1)
! Specifications for local variables
INTEGER I, IDER, ITYPE, NOUT
REAL FDATA(NDATA), FPVAL(N), FVALUE(N),&
VALUE(N), XDATA(NDATA), XVEC(N), EMAX1(15),&
EMAX2(15), X
! Specifications for intrinsics
INTRINSIC FLOAT, SIN, COS
REAL FLOAT, SIN, COS
! Specifications for subroutines
!
REAL F, FP
!
! Define a function
F(X) = SIN(X*X)
FP(X) = 2*X*COS(X*X)
!
CALL UMACH (2, NOUT)
! Set up a grid
DO 10 I=1, NDATA
XDATA(I) = 3.0*(FLOAT(I-1)/FLOAT(NDATA-1))
FDATA(I) = F(XDATA(I))
10 CONTINUE
DO 20 I=1, N
XVEC(I) = 3.0*(FLOAT(I-1)/FLOAT(2*NDATA-2))
FVALUE(I) = F(XVEC(I))
FPVAL(I) = FP(XVEC(I))
20 CONTINUE
!
WRITE (NOUT,99999)
! Loop to call SPLEZ for each ITYPE
DO 40 ITYPE=1, 15
DO 30 IDER=0, 1
CALL SPLEZ (XDATA, FDATA, XVEC, VALUE, ITYPE=ITYPE, &
IDER=IDER)
! Compute the maximum error
IF (IDER .EQ. 0) THEN
CALL SAXPY (N, -1.0, FVALUE, 1, VALUE, 1)
EMAX1(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))
ELSE
CALL SAXPY (N, -1.0, FPVAL, 1, VALUE, 1)
EMAX2(ITYPE) = ABS(VALUE(ISAMAX(N,VALUE,1)))
END IF
30 CONTINUE
WRITE (NOUT,'(I7,2F20.6)') ITYPE, EMAX1(ITYPE), EMAX2(ITYPE)
40 CONTINUE
!
99999 FORMAT (4X, 'ITYPE', 6X, 'Max error for f', 5X,&
'Max error for f''', /)
END
Output
ITYPE Max error for f Max error for f’
1 0.014082 0.658018
2 0.024682 0.897757
3 0.020896 0.813228
4 0.083615 2.168083
5 0.010403 0.508043
6 0.014082 0.658020
7 0.004756 0.228858
8 0.001070 0.077159
9 0.020896 0.813228
10 0.392603 6.047916
11 0.162793 1.983959
12 0.045404 1.582624
13 0.588370 7.680381
14 0.752475 9.673786
15 0.049340 1.713031