Basic Linear Algebra Subprograms (BLAS)
Set a vector to a constant value, xi ← a..................................................................... SSET
Copy a vector, yi ← xi........................................................................................... SCOPY
Scale a vector by a constant, xi ← axi.................................................................... SSCAL
Set a vector to a constant multiple of a vector, yi ← axi............................................ SVCAL
Add a constant to a vector, xi ←xi + a...................................................................... SADD
Subtract a vector from a constant, xi ← a - xi............................................................ SSUB
Add a multiple of one vector to another, yi ← axi + yi................................................. SAXPY
Swap two vectors, yi↔ xi..................................................................................... SSWAP
Compute xTy or xHy................................................................................................. SDOT
Compute extended precision xTy or xHy................................................................... DSDOT
Compute extended precision a + xTy or a + xHy..................................................... SDSDOT
Compute ACC + b + xTy
with extended precision
accumulator.....................................................................
SDDOTI
Compute zi ← xiyi............................................................................................... SHPROD
Compute Σ xiyizi....................................................................................................... SXYZ
Compute Σ xi......................................................................................................... SSUM
Compute Σ |xi|...................................................................................................... SASUM
Compute ||x||2....................................................................................................... SNRM2
Compute ∏ xi.................................................................................................... SPRDCT
Find the index i such that xi = minj xj......................................................................... ISMIN
Find the index i such that xi= maxj xj........................................................................ ISMAX
Find the index i such that |xi| = minj |xj|.................................................................... ISAMIN
Find the index i such that |xi| = maxj |xj|.................................................................. ISAMAX
Construct a Givens rotation................................................................................... SROTG
Apply a Givens rotation........................................................................................... SROT
Construct a modified Givens rotation................................................................... SROTMG
Apply a modified Givens rotation........................................................................... SROTM
Matrix-vector multiply, general.............................................................................. SGEMV
Matrix-vector multiply, banded.............................................................................. SGBMV
Matrix-vector multiply, Hermitian........................................................................... CHEMV
Matrix-vector multiply, Hermitian and banded......................................................... CHBMV
Matrix-vector multiply, symmetric and real............................................................. SSYMV
Matrix-vector multiply, symmetric and banded........................................................ SSBMV
Matrix-vector multiply, triangular............................................................................ STRMV
Matrix-vector multiply, triangular and banded.......................................................... STBMV
Matrix-vector solve, triangular................................................................................ STRSV
Matrix-vector solve, triangular and banded............................................................... STBSV
Rank-one matrix update, general and real................................................................ SGER
Rank-one matrix update, general,
complex,
and
transpose.....................................................................................................
CGERU
Rank-one matrix update, general,
complex,
and conjugate
transpose......................................................................................
CGERC
Rank-one matrix update,
Hermitian and conjugate
transpose..........................................................................
CHER
Rank-two matrix update,
Hermitian and conjugate
transpose........................................................................
CHER2
Rank-one matrix update, symmetric and real............................................................ SSYR
Rank-two matrix update, symmetric and real.......................................................... SSYR2
Matrix-matrix multiply, general............................................................................. SGEMM
Matrix-matrix multiply, symmetric........................................................................ SSYMM
Matrix-matrix multiply, Hermitian.......................................................................... CHEMM
Rank-k update, symmetric.................................................................................... SSYRK
Rank-k update, Hermitian..................................................................................... CHERK
Rank-2k update, symmetric................................................................................ SSYR2K
Rank-2k update, Hermitian.................................................................................. CHER2K
Matrix-matrix multiply, triangular........................................................................... STRMM
Matrix-matrix solve, triangular............................................................................... STRSM
Other Matrix/Vector Operations
Matrix Copy
Real general....................................................................................................... CRGRG
Complex general................................................................................................. CCGCG
Real band........................................................................................................... CRBRB
Complex band..................................................................................................... CCBCB
Matrix Conversion
Real general to real band...................................................................................... CRGRB
Real band to real general...................................................................................... CRBRG
Complex general to complex band........................................................................ CCGCB
Complex band to complex general........................................................................ CCBCG
Real general to complex general........................................................................... CRGCG
Real rectangular to complex rectangular................................................................ CRRCR
Real band to complex band.................................................................................. CRBCB
Real symmetric to real general.............................................................................. CSFRG
Complex Hermitian to complex general.................................................................. CHFCG
Real symmetric band to real band......................................................................... CSBRB
Complex Hermitian band to complex band............................................................. CHBCB
Real rectangular matrix to its transpose................................................................. TRNRR
Matrix Multiplication
Compute XT X....................................................................................................... MXTXF
Compute XT Y...................................................................................................... MXTYF
Compute XYT........................................................................................................ MXYTF
Multiply two real rectangular matrices................................................................... MRRRR
Multiply two complex rectangular matrices............................................................ MCRCR
Compute matrix Hadamard product....................................................................... HRRRR
Compute the bilinear form xTAy................................................................................ BLINF
Compute the matrix polynomial p(A)...................................................................... POLRG
Matrix-Vector Multiplication
Real rectangular matrix times a real vector............................................................ MURRV
Real band matrix times a real vector..................................................................... MURBV
Complex rectangular matrix times a complex vector............................................... MUCRV
Complex band matrix times a complex vector........................................................ MUCBV
Matrix Addition
Real band matrix plus a real band matrix............................................................... ARBRB
Complex band matrix plus a complex band matrix.................................................. ACBCB
Matrix Norm
∞-norm of a real rectangular matrix......................................................................... NRIRR
1-norm of a real rectangular matrix......................................................................... NR1RR
Frobenius norm of a real rectangular matrix............................................................ NR2RR
1-norm of a real band matrix.................................................................................. NR1RB
1-norm of a complex band matrix........................................................................... NR1CB
Distance Between Two Points
Euclidean distance................................................................................................. DISL2
1-norm distance..................................................................................................... DISL1
∞-norm distance..................................................................................................... DISLI
Vector Convolutions
Convolution of real vectors.................................................................................... VCONR
Convolution of complex vectors............................................................................. VCONC
Extended Precision Arithmetic
Initialize a real accumulator, ACC ← a....................................................................... DQINI
Store a real accumulator, a ← ACC........................................................................ DQSTO
Add to a real accumulator, ACC ← ACC + a............................................................. DQADD
Add a product to a real accumulator, ACC ← ACC + ab.............................................. DQMUL
Initialize a complex accumulator, ACC ← a................................................................ ZQINI
Store a complex accumulator, a ← ACC.................................................................. ZQSTO
Add to a complex accumulator, ACC ←ACC + a....................................................... ZQADD
Add a product to a complex
accumulator,
ACC ← ACC + ab...................................................................................................
ZQMUL
Visual Numerics, Inc. PHONE: 713.784.3131 FAX:713.781.9260 |