Package | Description |
---|---|
com.imsl.datamining |
Data mining and machine learning.
|
com.imsl.datamining.decisionTree |
Decision trees.
|
com.imsl.datamining.supportvectormachine |
Support vector machines.
|
Modifier and Type | Class and Description |
---|---|
static class |
PredictiveModel.CloneNotSupportedException
Wraps the
java.lang.CloneNotSupportedException to indicate
that the clone method in class Object has been
called to clone an object, but that the object's class does not implement
the Cloneable interface. |
static class |
PredictiveModel.StateChangeException
Exception thrown when an input parameter has changed that might affect
the model estimates or predictions.
|
static class |
PredictiveModel.SumOfProbabilitiesNotOneException
Exception thrown when the sum of probabilities is not approximately one.
|
Modifier and Type | Method and Description |
---|---|
void |
BootstrapAggregation.aggregate()
Performs the bootstrap aggregation.
|
void |
CrossValidation.crossValidate()
Performs V-Fold cross-validation.
|
void |
GradientBoosting.fitModel()
Performs the gradient boosting on the training data.
|
void |
PredictiveModel.fitModel()
Fits the predictive model to the training data (estimates the model using
the training data and current configuration settings).
|
double[] |
GradientBoosting.predict()
Returns the predicted values on the training data.
|
abstract double[] |
PredictiveModel.predict()
Predicts the response variable using the most recent fit.
|
double[] |
GradientBoosting.predict(double[][] testData)
Returns the predicted values on the input test data.
|
abstract double[] |
PredictiveModel.predict(double[][] testData)
Predicts the response values using the most recent fit and the provided
test data.
|
double[] |
GradientBoosting.predict(double[][] testData,
double[] testDataWeights)
Runs the gradient boosting on the training data and returns the predicted
values on the weighted test data.
|
abstract double[] |
PredictiveModel.predict(double[][] testData,
double[] testDataWeights)
Predicts the response values using the most recent fit, the provided test
data, and the test data case weights.
|
protected abstract void |
PredictiveModel.setConfiguration(PredictiveModel pm)
Sets the configuration of
PredictiveModel to that of the
input model. |
Constructor and Description |
---|
CrossValidation(PredictiveModel pm)
Creates a
CrossValidation object. |
Modifier and Type | Class and Description |
---|---|
static class |
DecisionTree.MaxTreeSizeExceededException
Exception thrown when the maximum tree size has been exceeded.
|
static class |
DecisionTree.PruningFailedToConvergeException
Exception thrown when pruning fails to converge.
|
static class |
DecisionTree.PureNodeException
Exception thrown when attempting to split a node that is already pure
(response variable is constant).
|
static class |
RandomTrees.ReflectiveOperationException
Class that wraps exceptions thrown by reflective operations in core
reflection.
|
Modifier and Type | Method and Description |
---|---|
void |
RandomTrees.fitModel()
Fits the random forest to the training data.
|
void |
DecisionTree.fitModel()
Fits the decision tree.
|
double[] |
RandomTrees.predict()
Returns the predicted values generated by the random forest on the
training data.
|
double[] |
RandomTrees.predict(double[][] testData)
Returns the predicted values on the input test data.
|
double[] |
RandomTrees.predict(double[][] testData,
double[] testDataWeights)
Returns the predicted values on the input test data and the test data
weights.
|
protected void |
RandomTrees.setConfiguration(PredictiveModel pm)
Sets the configuration of
RandomTrees to that of the input
model. |
Modifier and Type | Class and Description |
---|---|
static class |
SupportVectorMachine.ReflectiveOperationException
Class that wraps exceptions thrown by reflective operations in core
reflection.
|
Modifier and Type | Method and Description |
---|---|
void |
SupportVectorMachine.fitModel()
Fits the model to the training data, i.e, trains the support vector
machine.
|
Copyright © 2020 Rogue Wave Software. All rights reserved.