public static enum DecisionTreeInfoGain.GainCriteria extends Enum<DecisionTreeInfoGain.GainCriteria>
Enum Constant and Description |
---|
DEVIANCE
A measure of the quality of fit.
|
GINI_INDEX
A measure of statistical dispersion.
|
SHANNON_ENTROPY
A measure of randomness or uncertainty.
|
Modifier and Type | Method and Description |
---|---|
static DecisionTreeInfoGain.GainCriteria |
valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static DecisionTreeInfoGain.GainCriteria[] |
values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
public static final DecisionTreeInfoGain.GainCriteria SHANNON_ENTROPY
For a categorical variable having \(C\) distinct values over a data set \(S\), the Shannon Entropy is defined as $$\sum_{i=1}^{C}p_i\log(p_i)$$ where $$p_i = Pr(Y=i)$$ and where $$p_i \log(p_i) := 0$$ if \(p_i=0\).
public static final DecisionTreeInfoGain.GainCriteria GINI_INDEX
For a categorical variable having \(C\) distinct values over a data set \(S\), the Gini index is defined as $$ I(S)=\sum_{\begin{array}{c}i,j=1\\i\ne j\end{array}}^C p(i|S)=1-\sum^C_{i=1}p^2(i|S) $$ where \( p(i|S) \) denotes the probability that the variable is equal to the state \(i\) on the data set, \(S\).
public static final DecisionTreeInfoGain.GainCriteria DEVIANCE
For a categorical variable having \(C\) distinct values over a data set \(S\), the Deviance measure is $$\sum_{i=1}^{C}n_i\log(p_i)$$ where \(p_i = Pr(Y=i)\) and \(n_i\) is the number of cases with \(Y=i\) on the node.
public static DecisionTreeInfoGain.GainCriteria[] values()
for (DecisionTreeInfoGain.GainCriteria c : DecisionTreeInfoGain.GainCriteria.values()) System.out.println(c);
public static DecisionTreeInfoGain.GainCriteria valueOf(String name)
name
- the name of the enum constant to be returned.IllegalArgumentException
- if this enum type has no constant with the specified nameNullPointerException
- if the argument is nullCopyright © 2020 Rogue Wave Software. All rights reserved.