Package | Description |
---|---|
com.imsl.datamining.supportvectormachine |
Support vector machines.
|
Modifier and Type | Class and Description |
---|---|
class |
LinearKernel
Specifies the linear kernel for support vector machines.
|
class |
PolynomialKernel
Specifies the polynomial kernel for support vector machines.
|
class |
RadialBasisKernel
Specifies the radial basis kernel for support vector machines.
|
class |
SigmoidKernel
Specifies the sigmoid kernel for support vector machines.
|
Modifier and Type | Method and Description |
---|---|
abstract Kernel |
Kernel.clone()
Returns a clone of this object.
|
protected Kernel |
SupportVectorMachine.getKernel()
Returns the kernel object being used in the optimization.
|
Modifier and Type | Method and Description |
---|---|
protected SVModel |
SVOneClass.optimize(DataNode[][] x,
double[] y,
double[] w,
int len,
Kernel kernel)
Performs the one class support vector machine optimization problem.
|
protected SVModel |
SVClassification.optimize(DataNode[][] x,
double[] y,
double[] w,
int len,
Kernel kernel)
Performs the classification support vector machine optimization problem.
|
protected abstract SVModel |
SupportVectorMachine.optimize(DataNode[][] x,
double[] y,
double[] w,
int len,
Kernel kernel)
Abstract method to perform the support vector machine optimization.
|
protected SVModel |
SVRegression.optimize(DataNode[][] x,
double[] y,
double[] w,
int len,
Kernel kernel)
Performs the regression support vector machine optimization problem.
|
void |
SupportVectorMachine.setKernel(Kernel kernel)
Sets the kernel to be used in the optimization.
|
Constructor and Description |
---|
SupportVectorMachine(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a support vector machine for a single response variable and
multiple predictor variables.
|
SVClassification(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a support vector machine for classification (SVC).
|
SVOneClass(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a one class support vector machine.
|
SVRegression(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a support vector machine for regression (SVR).
|
Copyright © 2020 Rogue Wave Software. All rights reserved.