public class ContinuousUniformPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface, ClosedFormMaximumLikelihoodInterface
| Constructor and Description |
|---|
ContinuousUniformPD()
Constructs a continuous uniform probability distribution.
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
getClosedFormMLE(double[] x)
Returns the closed form maximum likelihood estimates.
|
double[] |
getClosedFormMlStandardError(double[] x)
Returns the standard error based on the closed form maximum likelihood
estimates.
|
double[] |
getParameterLowerBounds()
Returns the lower bounds of the parameters.
|
double[] |
getParameterUpperBounds()
Returns the upper bounds of the parameters.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the continuous uniform probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfXpublic ContinuousUniformPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds in class ProbabilityDistributiondouble array of length 2 containing the lower
bounds (\( -\infty \lt a \lt b \lt \infty \))public double[] getParameterUpperBounds()
getParameterUpperBounds in class ProbabilityDistributiondouble array of length 2 containing the upper
bounds (\( -\infty \lt a \lt b \lt \infty \))public double pdf(double x,
double... params)
The probability density function of the continuous uniform distribution is $$f(x|a,b)=\left\{\begin{array}{lll}\frac{1}{b-a}, & \mbox{for} & a\le x\le b \\ 0, & \mbox{for} & x\lt a \; \mbox{or} \; x\gt b \end{array}\right. $$ where \( -\infty \lt a \lt b \lt \infty \).
pdf in class ProbabilityDistributionx - a double, the value (quantile) at which to evaluate the pdfparams - a double array containing the parameters
a and b. The parameters can also be given in the form pdf(x,a,b),
where a and b are scalars.double, the probability density at
x given the parameter valuespublic double[] getPDFGradient(double x,
double... params)
getPDFGradient in interface PDFGradientInterfacex - a double, the value at which to evaluate the gradient.
The function is undefined when
x = a or x = b.params - a double array containing values of the
parameters, a and b.
The parameters can also be given in the form pdf(x,a,b),
where a and b are scalars.double array containing the first partial
derivative of the pdf given the parameterspublic double[][] getPDFHessian(double x,
double... params)
getPDFHessian in interface PDFHessianInterfacex - a double,the value at which to evaluate the Hessian.
The function is undefined when
x = a or x = b.params - a double array containing values of the
parameters, a and b. The parameters can also be given
in the form pdf(x,a,b),
where a and b are scalars.double matrix containing the second partial
derivatives of pdf with respect to the parameterspublic double[] getClosedFormMLE(double[] x)
For the continuous uniform distribution, the maximum likelihood estimates are the minimum and maximum of the sample data.
getClosedFormMLE in interface ClosedFormMaximumLikelihoodInterfacex - a double array containing the datadouble array containing the closed form estimatespublic double[] getClosedFormMlStandardError(double[] x)
getClosedFormMlStandardError in interface ClosedFormMaximumLikelihoodInterfacex - a double array containing the datadouble array containing the standard errorsCopyright © 2020 Rogue Wave Software. All rights reserved.