public class ExponentialPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface, ClosedFormMaximumLikelihoodInterface
Constructor and Description |
---|
ExponentialPD()
Constructs an exponential probability distribution.
|
Modifier and Type | Method and Description |
---|---|
double[] |
getClosedFormMLE(double[] x)
Returns the closed form maximum likelihood estimates.
|
double[] |
getClosedFormMlStandardError(double[] x)
Returns the standard error based on the closed form maximum likelihood estimates.
|
double[] |
getParameterLowerBounds()
Returns the lower bound for the parameter.
|
double[] |
getParameterUpperBounds()
Returns the upper bound for the parameter.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the exponential probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
public ExponentialPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds
in class ProbabilityDistribution
double
array of length 1 containing the lower
bound. b is strictly positive.public double[] getParameterUpperBounds()
getParameterUpperBounds
in class ProbabilityDistribution
double
array of length 1 containing the upper
bound. b is strictly positive.public double pdf(double x, double... params)
The probability density function of the exponential distribution is $$f(x|b)=\Gamma\left(x|1,b\right)=\frac{1}{b}e^{-\frac{x}{b}}$$ where b is a scale parameter.
pdf
in class ProbabilityDistribution
x
- a double
, the value (quantile) at which to evaluate the pdf.
x
must be non negative.params
- a double
, the scale parameter.double
, the probability density at
x
given the parameter valuepublic double[] getPDFGradient(double x, double... params)
getPDFGradient
in interface PDFGradientInterface
x
- a double
, the value at which to evaluate the
gradient. x
must be non-negative.params
- a double
array containing values of the
parameterdouble
array containing the first partial
derivative of the pdf with respect to the parameterpublic double[][] getPDFHessian(double x, double... params)
getPDFHessian
in interface PDFHessianInterface
x
- a double
, the value at which to evaluate
the Hessian. x
must be non-negative.params
- a double
array containing value of the
parameterdouble
matrix containing the second partial
derivatives of the pdf with respect to the parameterpublic double[] getClosedFormMLE(double[] x)
getClosedFormMLE
in interface ClosedFormMaximumLikelihoodInterface
x
- a double
array containing the datadouble
array containing maximum likelihood estimatespublic double[] getClosedFormMlStandardError(double[] x)
getClosedFormMlStandardError
in interface ClosedFormMaximumLikelihoodInterface
x
- a double
array containing the datadouble
array containing the standard errorsCopyright © 2020 Rogue Wave Software. All rights reserved.