public class GeneralizedGaussianPD extends ProbabilityDistribution implements Serializable, Cloneable
| Constructor and Description |
|---|
GeneralizedGaussianPD()
Constructs a generalized Gaussian probability distribution.
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
getParameterLowerBounds()
Returns the lower bounds of the parameters.
|
double[] |
getParameterUpperBounds()
Returns the upper bounds of the parameters.
|
double |
pdf(double x,
double... params)
Returns the value of the generalized Gaussian probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfXpublic GeneralizedGaussianPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds in class ProbabilityDistributiondouble array containing the lower
bounds for \(\mu\in\mathbb{R}\), \(\alpha \gt 0\), and \(\beta \gt 0\)public double[] getParameterUpperBounds()
getParameterUpperBounds in class ProbabilityDistributiondouble array containing the upper bounds for
\(\mu\in\mathbb{R}\), \(\alpha \gt 0\), and \(\beta \gt 0\)public double pdf(double x,
double... params)
The probability density function of the generalized Gaussian distribution is
$$ f(x; \mu,\alpha, \beta) = \frac{\beta}{2\alpha\Gamma(\frac{1}{\beta})} e^{-(\frac{|x-\mu|}{\alpha})^\beta} $$
where \(\mu\in\mathbb{R}\) is the location parameter, \(\alpha \gt 0\) is the scale parameter, and \(\beta \gt 0\) is the shape parameter. Note that this follows the parameterization given in Wikipedia. There are alternative parameterizations, as in Roenko, et. al. 2014.
References
1. Roenko, Alexey, Lukin, Vladimir, Djurovic, Igor, Simeunović, Marko.
(2014).
Estimation of parameters for generalized Gaussian distribution.
ISCCSP 2014 - 2014 6th International Symposium on Communications,
Control and Signal Processing, Proceedings. 376-379.
2. Wikipedia contributors. "Generalized normal distribution." Wikipedia,
The Free Encyclopedia.
pdf in class ProbabilityDistributionx - a double, the value (quantile) at which to evaluate the pdfparams - a double array containing \(\mu\), \(\alpha\), and
\(\beta\). The parameters can also be given in the form pdf(x,a,b,c),
where a=\(\mu\), b=\(\alpha\), and c=\(\beta\)
are scalars.double, the probability density at
x given the parameter valuesCopyright © 2020 Rogue Wave Software. All rights reserved.