public class GeometricPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface, ClosedFormMaximumLikelihoodInterface
Constructor and Description |
---|
GeometricPD()
Constructor for the geometric probability distribution.
|
Modifier and Type | Method and Description |
---|---|
double[] |
getClosedFormMLE(double[] x)
Returns the maximum likelihood estimate for the parameter.
|
double[] |
getClosedFormMlStandardError(double[] x)
Returns the standard error of the maximum likelihood estimate.
|
double[] |
getMethodOfMomentsEstimates(double[] x)
Returns the method-of-moments estimates given the sample data.
|
double[] |
getParameterLowerBounds()
Returns the lower bound of the parameter.
|
double[] |
getParameterUpperBounds()
Returns the upper bound of the parameter.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf evaluated at
x . |
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian matrix evaluated at
x . |
double |
pdf(double x,
double... params)
Returns the value of the geometric probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
public GeometricPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds
in class ProbabilityDistribution
double
array of length 1 containing the lower
bound (0)public double[] getParameterUpperBounds()
getParameterUpperBounds
in class ProbabilityDistribution
double
array of length 1 containing the upper
bound (1.0)public double pdf(double x, double... params)
Given the probability of success \(p\) for a sequence of independent and identical trials, the probability of \(X = k \in {0,1,2,\ldots }\) failures until the first success is given by \(Pr[X=k]=(1-p)^k p \). The discrete random variable \(X\) is a geometric random variable with parameter \(p\).
pdf
in class ProbabilityDistribution
x
- a double
, the value (quantile) at which to
evaluate the pdf. x
must be a non-negative integer. If
x
is not a whole number the floor()
value will
be used.params
- a double
, the probability of
successdouble
, the probability density at
x
given the parameter valuepublic double[] getPDFGradient(double x, double... params)
x
.getPDFGradient
in interface PDFGradientInterface
x
- a double
value. x
must be a non-negative
integer. If x
is not a whole number the
floor()
value will be used.params
- a double
specifying the probability of
successdouble
array containing the first partial
derivative of the parameterspublic double[][] getPDFHessian(double x, double... params)
x
.getPDFHessian
in interface PDFHessianInterface
x
- a double
value. x
must be a non-negative
integer. If x
is not a whole number the
floor()
value will be used.params
- a double
specifying the probability of
successdouble
matrix containing the second partial
derivatives of the parameterspublic double[] getClosedFormMLE(double[] x)
getClosedFormMLE
in interface ClosedFormMaximumLikelihoodInterface
x
- a double
array containing the datadouble
array containing the maximum likelihood estimate(s)public double[] getClosedFormMlStandardError(double[] x)
getClosedFormMlStandardError
in interface ClosedFormMaximumLikelihoodInterface
x
- a double
array containing the datadouble
array containing the standard errorspublic double[] getMethodOfMomentsEstimates(double[] x)
x
- a double
array containing the datadouble
array containing method-of-moments
estimate(s)Copyright © 2020 Rogue Wave Software. All rights reserved.