public class LogisticPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface
| Constructor and Description |
|---|
LogisticPD()
Constructor for the logistic probability distribution.
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
getMethodOfMomentsEstimates(double[] x)
Returns the method-of-moments estimates given the sample data.
|
double[] |
getParameterLowerBounds()
Returns the lower bounds of the parameters.
|
double[] |
getParameterUpperBounds()
Returns the upper bounds of the parameters.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the logistic probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfXpublic LogisticPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds in class ProbabilityDistributiondouble array of length 2 containing the lower
bounds for \(\mu\in\mathbb{R}\) and \(\sigma\gt0\)public double[] getParameterUpperBounds()
getParameterUpperBounds in class ProbabilityDistributiondouble array of length 2 containing the upper
bounds for \(\mu\in\mathbb{R}\) and \(\sigma\gt0\)public double pdf(double x,
double... params)
The probability density function of the logistic distribution is
$$f(x,\mu,\sigma)=\frac{e^{-(x-\mu)/\sigma}} {\sigma\left (1+e^{-(x-\mu)/\sigma} \right )^{2}}$$
where \(\mu\) is the location parameter and \(\sigma \gt 0\) is the scale parameter.
pdf in class ProbabilityDistributionx - a double, the value (quantile) at which to evaluate
the pdfparams - a double array containing the location and
scale parameters. The parameters can also be given in the form
pdf(x,a,b),
where a=\(\mu\) and b=\(\sigma\) are scalars.double, the value of the probability density
function evaluated at x given the parameterspublic double[] getPDFGradient(double x,
double... params)
getPDFGradient in interface PDFGradientInterfacex - a double, the value at which to evaluate
the gradientparams - a double array containing the parametersdouble array containing the first partial
derivatives of the pdf with respect to the parameterspublic double[][] getPDFHessian(double x,
double... params)
getPDFHessian in interface PDFHessianInterfacex - a double, the value at which to evaluate
the Hessianparams - a double array containing the parametersdouble matrix containing the second partial
derivatives of the pdf with respect to the parameterspublic double[] getMethodOfMomentsEstimates(double[] x)
x - a double array containing the datadouble array containing method-of-moments
estimates for \(\mu\) and \(\sigma\),
the parameters of the logistic distributionCopyright © 2020 Rogue Wave Software. All rights reserved.