public class RayleighPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface, ClosedFormMaximumLikelihoodInterface
| Constructor and Description |
|---|
RayleighPD()
Constructor for the Rayleigh probability distribution.
|
| Modifier and Type | Method and Description |
|---|---|
double[] |
getClosedFormMLE(double[] x)
Returns the closed form maximum likelihood estimate.
|
double[] |
getClosedFormMlStandardError(double[] x)
Returns the standard error based on the closed form maximum likelihood
estimate.
|
double[] |
getMethodOfMomentsEstimates(double[] x)
Returns the method-of-moments estimate given the sample data.
|
double[] |
getParameterLowerBounds()
Returns the lower bound for the parameter.
|
double[] |
getParameterUpperBounds()
Returns the upper bound for the parameter.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian matrix of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the Rayleigh probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfXpublic RayleighPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds in class ProbabilityDistributiondouble array of length 1 containing the lower
bound for \(\sigma>0\)public double[] getParameterUpperBounds()
getParameterUpperBounds in class ProbabilityDistributiondouble array of length 1 containing the upper
bound for \(\sigma>0\)public double pdf(double x,
double... params)
The probability density function of the Rayleigh distribution is $$f\left(x;\sigma\right)=\begin{array}{ll} \frac{x}{\sigma^2}e^{-x^2/\left(2\sigma^2\right)}, & x\ge0 \end{array}$$ where \(\sigma > 0\) is the scale parameter.
pdf in class ProbabilityDistributionx - a double, the value (quantile) at which to
evaluate the pdfparams - a double, the scale parameter (\(\sigma\gt 0\))double, the probability density at
x given the parameter valuepublic double[] getPDFGradient(double x,
double... params)
getPDFGradient in interface PDFGradientInterfacex - a double, the value at which to evaluate the
gradient. x must be non-negative.params - a double, the scale parameter
(\(\sigma\gt 0\))double array containing the first partial
derivative of the pdf with respect to the parameterpublic double[][] getPDFHessian(double x,
double... params)
getPDFHessian in interface PDFHessianInterfacex - a double, the value at which to evaluate
the Hessian. x must be non-negative.params - a double, the scale parameter
(\(\sigma\gt 0\))double matrix containing the second partial
derivatives of the pdf with respect to the parameterpublic double[] getClosedFormMLE(double[] x)
getClosedFormMLE in interface ClosedFormMaximumLikelihoodInterfacex - a double array containing the datadouble array containing the maximum likelihood estimatepublic double[] getClosedFormMlStandardError(double[] x)
getClosedFormMlStandardError in interface ClosedFormMaximumLikelihoodInterfacex - a double array containing the datadouble array containing the standard errorpublic double[] getMethodOfMomentsEstimates(double[] x)
x - a double array containing the datadouble array containing method-of-moments
estimate for the parameterCopyright © 2020 Rogue Wave Software. All rights reserved.