public class RayleighPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface, ClosedFormMaximumLikelihoodInterface
Constructor and Description |
---|
RayleighPD()
Constructor for the Rayleigh probability distribution.
|
Modifier and Type | Method and Description |
---|---|
double[] |
getClosedFormMLE(double[] x)
Returns the closed form maximum likelihood estimate.
|
double[] |
getClosedFormMlStandardError(double[] x)
Returns the standard error based on the closed form maximum likelihood
estimate.
|
double[] |
getMethodOfMomentsEstimates(double[] x)
Returns the method-of-moments estimate given the sample data.
|
double[] |
getParameterLowerBounds()
Returns the lower bound for the parameter.
|
double[] |
getParameterUpperBounds()
Returns the upper bound for the parameter.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian matrix of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the Rayleigh probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
public RayleighPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds
in class ProbabilityDistribution
double
array of length 1 containing the lower
bound for \(\sigma>0\)public double[] getParameterUpperBounds()
getParameterUpperBounds
in class ProbabilityDistribution
double
array of length 1 containing the upper
bound for \(\sigma>0\)public double pdf(double x, double... params)
The probability density function of the Rayleigh distribution is $$f\left(x;\sigma\right)=\begin{array}{ll} \frac{x}{\sigma^2}e^{-x^2/\left(2\sigma^2\right)}, & x\ge0 \end{array}$$ where \(\sigma > 0\) is the scale parameter.
pdf
in class ProbabilityDistribution
x
- a double
, the value (quantile) at which to
evaluate the pdfparams
- a double
, the scale parameter (\(\sigma\gt 0\))double
, the probability density at
x
given the parameter valuepublic double[] getPDFGradient(double x, double... params)
getPDFGradient
in interface PDFGradientInterface
x
- a double
, the value at which to evaluate the
gradient. x
must be non-negative.params
- a double
, the scale parameter
(\(\sigma\gt 0\))double
array containing the first partial
derivative of the pdf with respect to the parameterpublic double[][] getPDFHessian(double x, double... params)
getPDFHessian
in interface PDFHessianInterface
x
- a double
, the value at which to evaluate
the Hessian. x
must be non-negative.params
- a double
, the scale parameter
(\(\sigma\gt 0\))double
matrix containing the second partial
derivatives of the pdf with respect to the parameterpublic double[] getClosedFormMLE(double[] x)
getClosedFormMLE
in interface ClosedFormMaximumLikelihoodInterface
x
- a double
array containing the datadouble
array containing the maximum likelihood estimatepublic double[] getClosedFormMlStandardError(double[] x)
getClosedFormMlStandardError
in interface ClosedFormMaximumLikelihoodInterface
x
- a double
array containing the datadouble
array containing the standard errorpublic double[] getMethodOfMomentsEstimates(double[] x)
x
- a double
array containing the datadouble
array containing method-of-moments
estimate for the parameterCopyright © 2020 Rogue Wave Software. All rights reserved.