public class WeibullPD extends ProbabilityDistribution implements Serializable, Cloneable, PDFHessianInterface
Constructor and Description |
---|
WeibullPD()
Constructor for the Weibull probability distribution.
|
Modifier and Type | Method and Description |
---|---|
double[] |
getMethodOfMomentsEstimates(double[] x)
Returns the method-of-moments estimates given the sample data.
|
double[] |
getParameterLowerBounds()
Returns the lower bounds of the parameters.
|
double[] |
getParameterUpperBounds()
Returns the upper bounds of the parameters.
|
double[] |
getPDFGradient(double x,
double... params)
Returns the analytic gradient of the pdf.
|
double[][] |
getPDFHessian(double x,
double... params)
Returns the analytic Hessian of the pdf.
|
double |
pdf(double x,
double... params)
Returns the value of the Weibull probability density function.
|
getNumberOfParameters, getPDFGradientApproximation, getPDFHessianApproximation, getRangeOfX, setRangeOfX
public WeibullPD()
public double[] getParameterLowerBounds()
getParameterLowerBounds
in class ProbabilityDistribution
double
array containing the lower
bounds for k>0 and λ>0public double[] getParameterUpperBounds()
getParameterUpperBounds
in class ProbabilityDistribution
double
array containing the upper
bounds for k>0 and λ>0public double pdf(double x, double... params)
The probability density function of the Weibull distribution is f(x;λ,k)={kλ(xλ)k−1e−(x/λ)kx≥00x<0 where k>0 is the shape parameter and λ>0 is the scale parameter.
pdf
in class ProbabilityDistribution
x
- a double
, the value (quantile) at which to evaluate
the pdfparams
- a double
array containing the
parameters k>0 and λ>0. The parameters can also be given in
the form pdf(x,a,b)
, where a
=k and
b
=λ are scalars.double
, the probability density at
x
given the parameter valuespublic double[] getPDFGradient(double x, double... params)
getPDFGradient
in interface PDFGradientInterface
x
- a double
, the value at which to evaluate the
gradientparams
- a double
array containing
k>0 and λ>0double
array containing the first partial
derivative of the pdf with respect to the parameterspublic double[][] getPDFHessian(double x, double... params)
getPDFHessian
in interface PDFHessianInterface
x
- a double
, the value at which to evaluate the
Hessianparams
- a double
array containing
k>0 and λ>0double
matrix containing the second partial
derivatives of the pdf with respect to the parameterspublic double[] getMethodOfMomentsEstimates(double[] x)
x
- a double
array containing the datadouble
array containing method-of-moments
estimates for the parameters of the Weibull distributionCopyright © 2020 Rogue Wave Software. All rights reserved.