RandomNextMultivariateNormal Method (Int32, Cholesky) |
Note: This API is now obsolete.
Generate pseudorandom numbers from a multivariate normal
distribution.
Namespace: Imsl.StatAssembly: ImslCS (in ImslCS.dll) Version: 6.5.2.0
Syntax [ObsoleteAttribute("This is a deprecated method. use NextMultivariateNormal(Cholesky matrix)")]
public virtual double[] NextMultivariateNormal(
int k,
Cholesky matrix
)
<ObsoleteAttribute("This is a deprecated method. use NextMultivariateNormal(Cholesky matrix)")>
Public Overridable Function NextMultivariateNormal (
k As Integer,
matrix As Cholesky
) As Double()
public:
[ObsoleteAttribute(L"This is a deprecated method. use NextMultivariateNormal(Cholesky matrix)")]
virtual array<double>^ NextMultivariateNormal(
int k,
Cholesky^ matrix
)
[<ObsoleteAttribute("This is a deprecated method. use NextMultivariateNormal(Cholesky matrix)")>]
abstract NextMultivariateNormal :
k : int *
matrix : Cholesky -> float[]
[<ObsoleteAttribute("This is a deprecated method. use NextMultivariateNormal(Cholesky matrix)")>]
override NextMultivariateNormal :
k : int *
matrix : Cholesky -> float[]
Parameters
- k
- Type: SystemInt32
An int which specifies the length of the multivariate normal
vectors.
- matrix
- Type: Imsl.MathCholesky
The Cholesky factorization of the variance-covariance matrix
of order k.
Return Value
Type:
Double
A
double array which contains the pseudorandom numbers from a
multivariate normal distribution.
Remarks NextMultivariateNormal generates pseudorandom numbers from a
multivariate normal distribution with mean vector consisting of all
zeroes and variance-covariance matrix whose Cholesky factor (or
"square root") is matrix; that is, matrix is an upper
triangular matrix such that the transpose of matrix times
matrix is the variance-covariance matrix. First, independent
random normal deviates with mean 0 and variance 1 are generated, and
then the matrix containing these deviates is post-multiplied by
matrix.
Deviates from a multivariate normal distribution with means other
than zero can be generated by using NextMultivariateNormal and
then by adding the means to the deviates.
See Also