Package | Description |
---|---|
com.imsl.datamining |
Data mining and machine learning.
|
com.imsl.datamining.decisionTree |
Decision trees.
|
com.imsl.datamining.supportvectormachine |
Support vector machines.
|
Modifier and Type | Method and Description |
---|---|
PredictiveModel.VariableType[] |
PredictiveModel.getPredictorTypes()
Returns an array of
VariableType objects that correspond to
the predictor data types in xy . |
PredictiveModel.VariableType |
PredictiveModel.getResponseVariableType()
Returns the variable type of the response variable.
|
PredictiveModel.VariableType[] |
PredictiveModel.getVariableType()
Returns an array containing the variable types in
xy . |
static PredictiveModel.VariableType |
PredictiveModel.VariableType.valueOf(String name)
Returns the enum constant of this type with the specified name.
|
static PredictiveModel.VariableType[] |
PredictiveModel.VariableType.values()
Returns an array containing the constants of this enum type, in
the order they are declared.
|
Modifier and Type | Method and Description |
---|---|
void |
PredictiveModel.setPredictorTypes(PredictiveModel.VariableType[] predVarType)
Sets the
VariableType objects that correspond to the
predictor data types in xy . |
void |
GradientBoosting.setTrainingData(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Sets up the training data for the predictive model.
|
void |
PredictiveModel.setTrainingData(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Sets up the training data for the predictive model.
|
void |
PredictiveModel.setVariableType(PredictiveModel.VariableType[] varType)
Sets the variable types for the data.
|
Constructor and Description |
---|
GradientBoosting(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
GradientBoosting object for a single response
variable and multiple predictor variables. |
PredictiveModel(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
PredictiveModel object for a single response
variable and multiple predictor variables. |
Modifier and Type | Method and Description |
---|---|
PredictiveModel.VariableType |
Tree.getPredictorType(int i)
Returns the
PredictiveModel.VariableType of a
predictor variable. |
PredictiveModel.VariableType |
Tree.getResponseType()
Returns the
PredictiveModel.VariableType of
the response variable. |
Constructor and Description |
---|
ALACART(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs an
ALACART decision tree for a single response
variable and multiple predictor variables. |
C45(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
C45 object for a single response variable and
multiple predictor variables. |
CHAID(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
CHAID object for a single response variable and
multiple predictor variables. |
DecisionTree(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
DecisionTree object for a single response
variable and multiple predictor variables. |
DecisionTreeInfoGain(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
DecisionTree object for a single response
variable and multiple predictor variables. |
QUEST(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
QUEST object for a single response variable
and multiple predictor variables. |
RandomTrees(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a
RandomTrees random forest of
ALACART decision trees. |
Tree(int nRows,
int minObsAllowedInChild,
int maxNumberOfCategories,
int maxNumberOfNodes,
int nClasses,
int nPreds,
PredictiveModel.VariableType varType,
int[] predNValues,
PredictiveModel.VariableType[] predType,
int nyMissing)
Creates the root node of a decision tree and contains information about
the relationship of child nodes.
|
Tree(int nRows,
int minObsAllowedInChild,
int maxNumberOfCategories,
int maxNumberOfNodes,
int nClasses,
int nPreds,
PredictiveModel.VariableType varType,
int[] predNValues,
PredictiveModel.VariableType[] predType,
int nyMissing)
Creates the root node of a decision tree and contains information about
the relationship of child nodes.
|
Constructor and Description |
---|
SupportVectorMachine(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a support vector machine for a single response variable and
multiple predictor variables.
|
SupportVectorMachine(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a support vector machine for a single response variable and
multiple predictor variables.
|
SVClassification(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a support vector machine for classification (SVC).
|
SVClassification(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a support vector machine for classification (SVC).
|
SVOneClass(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a one class support vector machine.
|
SVOneClass(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a one class support vector machine.
|
SVRegression(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType)
Constructs a support vector machine for regression (SVR).
|
SVRegression(double[][] xy,
int responseColumnIndex,
PredictiveModel.VariableType[] varType,
Kernel k)
Constructs a support vector machine for regression (SVR).
|
Copyright © 2020 Rogue Wave Software. All rights reserved.