Cubic Spline Interpolation
Derivative end conditions.............................................................. cub_spline_interp_e_cnd
Shape preserving......................................................................... cub_spline_interp_shape
Cubic Spline Evaluation and Integration
Evaluation and differentiation.................................................................... cub_spline_value
Integration.......................................................................................... cub_spline_integral
Spline Interpolation
One-dimensional interpolation........................................................................ spline_interp
Knot sequence given interpolation data........................................................... spline_knots
Two-dimensional, tensor-product interpolation............................................ spline_2d_interp
Spline Evaluation and Integration
One-dimensional evaluation and differentiation.................................................. spline_value
One-dimensional integration........................................................................ spline_integral
Two-dimensional evaluation and differentiation............................................. spline_2d_value
Two-dimensional integration................................................................... spline_2d_integral
Least-Squares Approximation and Smoothing
General functions.......................................................................... user_fcn_least_squares
Splines with fixed knots.................................................................... spline_least_squares
Tensor-product splines with fixed knots......................................... spline_2d_least_squares
Cubic smoothing spline....................................................................... cub_spline_smooth
Splines with constraints.................................................................. spline_lsq_constrained
Smooth one-dimensional data by error detection........................................ smooth_1d_data
Scattered Data Interpolation
Akima’s surface-fitting method............................................................. scattered_2d_interp
Scattered Data Least Squares
Fit using radial-basis functions.............................................................. radial_scattered_fit
Evaluate radial-basis fit............................................................................... radial_evaluate
|
Visual Numerics, Inc. PHONE: 713.784.3131 FAX:713.781.9260 |