Chapter 3: Interpolation and Approximation

Routines

Cubic Spline Interpolation

Derivative end conditions.............................................................. cub_spline_interp_e_cnd

Shape preserving......................................................................... cub_spline_interp_shape

Cubic Spline Evaluation and Integration

Evaluation and differentiation.................................................................... cub_spline_value

Integration.......................................................................................... cub_spline_integral

Spline Interpolation

One-dimensional interpolation........................................................................ spline_interp

Knot sequence given interpolation data........................................................... spline_knots

Two-dimensional, tensor-product interpolation............................................ spline_2d_interp

Spline Evaluation and Integration

One-dimensional evaluation and differentiation.................................................. spline_value

One-dimensional integration........................................................................ spline_integral

Two-dimensional evaluation and differentiation............................................. spline_2d_value

Two-dimensional integration................................................................... spline_2d_integral

Least-Squares Approximation and Smoothing

General functions.......................................................................... user_fcn_least_squares

Splines with fixed knots.................................................................... spline_least_squares

Tensor-product splines with fixed knots......................................... spline_2d_least_squares

Cubic smoothing spline....................................................................... cub_spline_smooth

Splines with constraints.................................................................. spline_lsq_constrained

Smooth one-dimensional data by error detection........................................ smooth_1d_data

Scattered Data Interpolation

Akima’s surface-fitting method............................................................. scattered_2d_interp

Scattered Data Least Squares

Fit using radial-basis functions.............................................................. radial_scattered_fit

Evaluate radial-basis fit............................................................................... radial_evaluate


Visual Numerics, Inc.
Visual Numerics - Developers of IMSL and PV-WAVE
http://www.vni.com/
PHONE: 713.784.3131
FAX:713.781.9260